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a b s t r a c t

Biological vision systems have evolved over millions of years, resulting in complex neural structures for
representation and processing of stimuli. Moreover, biological visual systems are typically far more
efficient than current human-made machine vision systems. The present report describes a non-task-
dependent image representation scheme that simulates a biological neural vision mechanism in the
early visual system. We designed a neural model involving multiple types of computational units to
simulate ganglion cells and their non-classical receptive fields, local feedback control circuits and
receptive field dynamic self-adjustment mechanisms in the retina. Beyond the pixel level, our model is
able to represent images self-adaptively and rapidly. In addition, the improved representation was found
to substantially facilitate image segmentation, figure-ground separation, saliency detection, and object
recognition. We propose that these improvements arise because the retinal ganglion cells can resize
their receptive fields, enabling multi-scale analysis functionality, a neighborhood referring function, and
a localized synthetic function. The ganglion cell layer is the starting point for a diverse variety of
subsequent visual processing. The extracted features and image presentation by the ganglion cell will be
transmitted into high levels of visual system, for many visual tasks such as image segmentation, contour
detection, object recognition and so on, the visual representation in the early stage of visual system is
universal and independent on visual tasks.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The present work describes a new type of scheme for image
representation is described here. This new schema is based on the
simulation of biological processes, because biological visual systems
are highly optimized as a result of evolutionary pressures. This system
involves modeling retinal ganglion cells (GCs) and their dynamic
properties.

Biological visual systems, especially the vision of higher mammals,
can adapt to changing environments. A human observer can easily
recognition his friend in a crowd. However, the same task becomes
extremely challenging for a computer vision system due to the
absence of an appropriate representation of the object and context.
Some questions are worth to researching: what features are good for a
computational method? What features are used by humans for
recognition? How the visual system represent the input visual
information. In the human visual system, visual information obtained
from the eye is first processed by the circuitry of the retina. The output

of the retina is conveyed to the lateral geniculate nucleus by the axons
of GCs, which form the optic nerve. By analyzing the output of the
retina, researchers can obtain the methods of processing and trans-
forming in the retinal receptive fields (RFs). A typical RF of a GC is a
circular area on the retina, consisting of a central region and an
annular surrounding region. A number of computational studies in the
past 20 years have focused on the modeling of GCs: typically with
respect to edge or contour detection [1], image enhancement [2], and
multi-scale analysis [3]. Some recent studies have applied GC models
to represent images [4–6], and have begun to model much more
complex functions of a GC RF. Consideration of these studies from the
perspective of neural computation reveals that the following two
aspects can be improved upon: (a) referring to a greater variety of
neurobiological findings to construct a more complete neural-
processing cell circuit, and (b) adopting a dynamic receptive field
strategy that requires cell-circuits to adjust their RFs self-adaptively. As
such, the main purpose of this paper is to design a GC model that
imitates neural mechanisms to represent images.

The remainder of this paper is arranged into the following
sections. In Section 2, we formalize the design of the image
representation model based on the biological mechanisms of the
GC and its RF, and present an algorithm of adaptively adjusting the
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size of the RF. Sections 3 and 4 present the models on segmentation
and figure-ground separation methods, respectively, applied to input
images. Section 5 shows that these representations can effectively
promote saliency detection. In Section 6, an experiment for object
detection is proposed, and the results show that our image repre-
sentation scheme is successfully applied to improve object detection.
Finally, Section 7 concludes the paper and discusses the future work
on computer vision, with emphasis on models inspired by the
human visual system.

2. A model based on non-classical receptive field

In the human vision system, GCs are the final stage of retinal
information processing, thus GCs and their RFs underlie almost all
final information processing functions in the retina. Here, we present
a GC-inspired multiple layer model for image representation. The
focus is on a non-classical receptive field (nCRF) mechanism.

2.1. The anatomical structure of the nCRF

Since the 1960s, numerous studies have established the exis-
tence of a large region outside the classical receptive field (CRF)
[7–9]. In the outer region, light spot stimuli cannot directly cause a
reaction of the cells, but stimuli in this region can modulate the
reaction caused by the CRF. This modulation can be facilitatory,
inhibitory or disinhibitory [10,11], and this expanded receptive
field is denoted as an nCRF. The RF is divided into three parts: the
center of CRF, the surround of CRF and the nCRF area, as shown in
Fig. 1. Activities in the region can inhibit the antagonistic effect
and compensate in part for the loss of low spatial frequency
caused by the CRF center-periphery antagonism to some extent.
The nCRF plays an important role in representing contour [12],
shape [13], and curvature [14,15]. Moreover, it plays an important
role in separating figures out of background. The nCRF compen-
sates for the loss of low spatial frequency by adding the output
from the surround of CRF. Through its nCRF, a GC expands its
information-receiving scope of its CRF, and, undoubtedly, this
neural basis makes the GC the capable of integrating image
features over a larger scale [16].

Neurophysiology establishes that the ability of horizontal cells
(HCs) to integrate information from widely separated receptor
cells (RCs) depends on the permeability of large gap junctions.
When a disinhibitory nCRF is solely and fully stimulated by grating
patches in low spatial frequency, large-scale HCs can be activated
simultaneously. This affects the activities of RCs through spatial
summation and feedback, and elicits the responses through
bipolar cells (BCs). Here, spatial summation is defined as a way
of achieving an action potential in a neuron with input from
multiple presynaptic cells. Spatial summation is the algebraic
summation of potentials from different areas of input, usually on

the dendrites. Moreover, amacrine cells (ACs) connect many of the
nearby GCs in the horizontal direction through extensive dendritic
branches. ACs also interconnect with each other. The span of AC's
connection extends far beyond a GC's CRF surround. Therefore, AC
is properly related to the formation of an nCRF over a wide range.
Thus, HC and AC play the role of information integration in the
outer and inner plexiform layer respectively. GCs receive inputs
from many neurons in the outer and inner plexiform layer, hence,
HCs and ACs are properly connected with the formation of the
nCRF of a retinal GC [17].

2.2. Model of a GC adjusting its RF self-adaptively

GCs adjust their RFs according to the visual input. RFs will
expand at low contrast and shrink at high contrast. As a result, RFs
with a variety of sizes are more efficient for representing an image
than RFs of an equivalent size. Therefore, finding a way to apply
the nCRF to image understanding (rather than just edge detection,
image smoothing or contrast invariance), remains problematic,
especially for information integration. An important finding is that
a GC RF can be resized to a certain extent according to the
properties of a given stimulus [8,18–20]. Smirnakis et al., recorded
the spike trains of GCs in the isolated retina of a tiger salamander
or rabbit, and found that the visual processing of the GC in the
retina is adaptive and adjusts not only to the average illumination
but also to both the range of intensity fluctuations and their spatial
scale [21]. The study demonstrated a remarkable plasticity in the
retinal processing that may contribute to the contrast adaptation
of the human vision. Solomon et al. quantified the effect of nCRF
stimulation on visually responsive cells in the lateral geniculate
nucleus (LGN) of a marmoset through electrophysiological experi-
ments [22]. The effect of the nCRF is referred as extra-classical
inhibition (ECI). The study showed that the ECI also contributed to
contrast-dependent changes in spatial summation. The research-
ers found that LGN cells also show contrast-dependent changes in
spatial summation, where, on average, the size (radius) of the
excitatory CRF at a low contrast is 1.31 times that at a high contrast
[22]. Therefore, for the LGN cells, the excitatory summation region
was shown to be larger at a lower contrast. For the parvocellular
cell, the size of the excitatory region at a low contrast is 1.45 times
that at a high contrast. For the magnocellular cell, the ratio of the
sizes of the excitatory at low contrast to that at high contrast is
2.37, and, for the koniocellular cell, the ratio is 1.16. The radius of
the inhibitory region exhibited less consistent changes. In 2004,
Nolt et al. found that spatial summation within their RFs was
dependent on the contrast of the stimuli presented, based on
extracellular recordings from 69 LGN cells in anesthetized cats
[23]. The researchers proposed that this contrast dependency in
the retinal GCs results directly from a reduction in the size of the
central mechanism due to an increase in contrast. They also
pointed out that these properties first arise in the retina and are

Fig. 1. Spatial structure of the CRF and nCRF and their computational relationships.
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