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a b s t r a c t

The central nervous system regulates recruitment and firing of motor units to modulate muscle tension.
Estimation of the firing rate time series is typically performed by decomposing the electromyogram
(EMG) into its constituent firing times, then lowpass filtering a constituent train of impulses. Little
research has examined the performance of different estimation methods, particularly in the inevitable
presence of decomposition errors. The study of electrocardiogram (ECG) and electroneurogram (ENG) fir-
ing rate time series presents a similar problem, and has applied novel simulation models and firing rate
estimators. Herein, we adapted an ENG/ECG simulation model to generate realistic EMG firing times
derived from known rates, and assessed various firing rate time series estimation methods. ENG/ECG-
inspired rate estimation worked exceptionally well when EMG decomposition errors were absent, but
degraded unacceptably with decomposition error rates of P1%. Typical EMG decomposition error
rates—even after expert manual review—are 3–5%. At realistic decomposition error rates, more tradi-
tional EMG smoothing approaches performed best, when optimal smoothing window durations were
selected. This optimal window was often longer than the 400 ms duration that is commonly used in
the literature. The optimal duration decreased as the modulation frequency of firing rate increased, aver-
age firing rate increased and decomposition errors decreased. Examples of these rate estimation methods
on physiologic data are also provided, demonstrating their influence on measures computed from the fir-
ing rate estimate.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The central nervous system regulates recruitment and firing
rates of motor units (MUs) to modulate overall muscle tension
(Henneman et al., 1965; Milner-Brown et al., 1972, 1973a,
1973b). For active MUs, firing rate—and other measures derived
from it—have been studied during healthy physiologic states,
including: constant-force contractions (DeLuca et al., 1996), slowly
increasing force contractions (DeLuca et al., 1982a,b; Milner-Brown
et al., 1973b), fatigue (Bigland-Ritchie et al., 1983), muscle pain
(Farina et al., 2004), physical training (Duchateau et al., 2006) and
aging (Kallio et al., 2012; Christie and Kamen, 2009); and during
disease states (Dietz et al., 1974; Dorfman et al., 1989;
Gemperline et al., 1995; Kasi et al., 2009; Rice et al., 1992). This
research remains ongoing.

By ‘‘firing rate,” we are referring to the firing rate time series. To
study firing rate, indwelling electrodes are typically used to record
the electromyogram (EMG). This EMG is decomposed into its con-
stituent MU firing times, from which individual MU firing rate
information is extracted. Recently, surface arrays have also been
used to identify MU firing times (Holobar and Zazula, 2004,
2007). In either case, the firing times are generally modeled as a
stochastic point process, formed as a result of the underlying
time-varying firing rate. Typically, simple information extraction
techniques were used to estimate statistical parameters of the
EMG firing rate time series. Kamen et al. (1995) estimated average
firing rate during maximum-effort contractions from the five
shortest inter-discharge intervals (IDIs) during a steady-state por-
tion of contraction, excluding doublets (IDI < 10 ms) and long IDIs
(>200 ms). Gerdle et al. (2008) used the median firing rate of
constant-force contractions to produce an estimate that was less
sensitive to possible missed MU action potential (MUAP) detec-
tions. Navallas et al. (2014, 2015) used maximum likelihood esti-
mation to improve computation of the IDI mean and standard
deviation during constant-force contractions. Some researchers
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have developed estimators of the complete (time-varying) firing
rate time series, to facilitate more advanced characterization of
its evolution, e.g. the ‘‘onion skin” effect, inter-unit synchroniza-
tion and common drive (DeLuca et al., 1982a; DeLuca, 1985;
Stashuk and DeLuca, 1989). Lepora et al. (2009) estimated firing
rate from the number of firings in contiguous 50 ms time intervals,
pooling data across ensemble trials to assure a sufficient number of
firings per interval. Stashuk (2001) estimated firing rate at each fir-
ing time as the inverse of a Hamming weighted average of 10 IDIs
centered about the firing time, excluding outlier intervals. DeLuca
et al. (1982a) estimated firing rate by convolving an impulse train
corresponding to the MU firing times with a non-causal (zero
phase) 400 ms duration Hanning filter. Physiologically, multiple
central nervous system factors contribute to motor nerve excita-
tion and the resulting MU firing times. However, these various fac-
tors cannot be directly recorded. Thus, the absence of a
physiological ‘‘gold standard” makes it difficult to objectively
assess the accuracy of firing rate time series (and parameter) esti-
mates. We are not aware of rigorous assessment of firing rate time
series estimation methods within the EMG field.

More sophisticated models and methods of firing rate time ser-
ies analysis have been applied to studies of the nervous system and
heart rate (Bayly, 1968; Berger et al., 1986; Mateo and Laguna,
2000). In particular, the continuous-time integral pulse frequency
modulation (IPFP) model, adapted for implementation in discrete
time, has been used to simulate firing times from a firing rate time
series. These firing times can be supplied to a firing rate time series
estimation algorithm, and then the estimated rate compared
against the ‘‘true” rate at each discrete time. Within the ECG liter-
ature, robust performance comparisons have been made between
advanced firing rate estimators using this model: Berger et al.
(1986) estimated heart rate by analytically convolving the
continuous-time instantaneous heart rate with a rectangular win-
dow function and then analytically sampling the result, while
Mateo and Laguna (2000) used spline functions to smooth the
instantaneous heart rate (directly in discrete time). In each case,
the instantaneous rate was defined as the inverse of the IDI
throughout the duration of each IDI.

In this study, we used the IPFM model to simulate MUAP firing
times from various firing rate profiles and then quantitatively eval-
uated several firing rate time series estimators drawn from both the
EMG and ECG literature. Our goal was to rigorously cross-compare
these estimators. Of particular interest was the performance of each
rate estimator in the presence of firing detection/classification
errors. In the ECG field, detection errors have been reported as quite
low (particularly during recording at rest), certainly under 0.7%
(Pan and Tompkins, 1985). In contrast, detection errors in EMG
decomposition have been reported as much higher; errors of
3–5% were reported even when automated decomposition is
augmented by exhaustive manual editing (Erim and Lin, 2008),
and considerably higher (10–20% or more) with automated decom-
position or with low-amplitude MUAP trains (Nawab et al., 2008).
Hence, our simulations compared performance across a range of
false positive and missed detection rates. Lastly, examples drawn
from physiologic recordings were used to illustrate the perfor-
mance of the different firing rate estimation algorithms.

2. Methods

2.1. Integral Pulse Frequency Modulation (IPFM) model and firing rate
estimators

All processing was performed in discrete time, but portions are
based on initial continuous-time steps. Firing times in our simula-
tions were generated as the output of the IPFM model, given a

firing rate as input. In a continuous-time IPFM model, every two
consecutive firing times tk and tkþ1 were related as (Bayly, 1968):

1 pulse ¼
Z t¼tkþ1

t¼tk

½f o þ f ModðtÞ�dt ð1Þ

where f o > 0 was the average firing rate in pulses/s (pps) and
f ModðtÞ P �f 0 was the zero-mean rate modulation as a function of
time, t, in pps. Thus, the instantaneous firing rate equaled:
f o þ f ModðtÞ, where this sum was non-negative. Essentially, the inte-
gral summed the instantaneous rate until a threshold of 1 pulse was
achieved, a simulated firing then occurred at that time and the inte-
gral was reset for accumulation during the next IDI. For a constant
firing rate, f ModðtÞ ¼ 0. We implemented this model in discrete time
using a discrete sum with a sampling interval of 1/40,960 s. Firing
times were rounded to the nearest 1/4096 s, to correspond to the
sampling rate of the firing rate estimators. For one simulation, this

model produced a set of N time-increasing firing times t
!
F ¼

t1; t2; t3; . . . tNf g.
Firing rate estimators (in pps) were compared using a sampling

rate of Fs = 4096 Hz. Rate estimation was made from each firing

time vector t
!

F . The continuous-time ‘‘instantaneous” rate, rInstðtÞ,
was defined at time t (t being located between firing times tk and
tk+1) as the inverse of the IDI in which t was located:

rInstðtÞ ¼ 1
tkþ1 � tk

: ð2Þ

Short duration IDIs corresponded to large firing rates; long duration
IDIs corresponded to small firing rates. The rate was constant
between firing times and changed in a step fashion at the next firing
time. The discrete-time instantaneous rate used in our analysis,
rInst ½n� (where n was the sample index), was computed by periodi-
cally sampling rInstðtÞ. This estimator had no parameters. Since
rInst ½n� was a sampled version of the continuous-time instantaneous
rate rInstðtÞ, it suffered from aliasing at the step transitions occurring
at each firing time (Berger et al., 1986).

To alleviate this aliasing, Berger et al. (1986) showed that the
continuous-time instantaneous rate shown in Eq. (2) can be analyt-
ically convolved with a rectangular gate function and then analyt-
ically sampled, producing the ‘‘Berger” rate, rBerger½n�. Convolution
in continuous time with a gate function was a form of lowpass fil-
tering that limits the aliasing. The Berger rate calculation can be
thought of as:

rBerger ½n� ¼ rInstðtÞ � RectTB ðtÞ
� ���

t¼ n
Fs
; ð3Þ

where RectTB ðtÞ ¼
1
TB
; �TB

2 < t < TB
2

0; otherwise

� �
. Parameter TB was varied

between 40 and 1600 ms in increments of 40 ms. Note that the low-
pass analytic convolution distorted the spectrum of the firing rate.
Berger et al. corrected for this distortion—but with a technique that
was only useful at low frequencies. We did not apply their
correction.

The ‘‘DeLuca” rate (DeLuca et al., 1982a) was formed directly in
discrete-time. Time-series dF ½n� equaled one at the sample location
closest to each firing time, and zero otherwise. Then,

rDeLuca½n� ¼ dF ½n� �HannTD ½n�; ð4Þ
where HannTD ½n� was a non-causal (zero-phase) Hanning window.
The window duration TD was varied between 40 and 1600 ms in
increments of 40 ms.

Mateo and Laguna (2000) created a smoothed firing rate by
initially assembling the previously defined N-length vector of

(non-periodic) firing times, t
!

F , as the x-axis vector; and the stair-
case vector 1;2;3; . . .Nf g as the y-axis vector. The y-axis values
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