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a b s t r a c t

This paper investigates a new hybrid projective synchronization scheme between two coupled
fractional-order complex networks with different sizes. The hybrid projective synchronization studied
in this paper includes complete synchronization of the states of the nodes in each network and
projective synchronization of the states of a pair of nodes from both networks. Based on the stability
theorem of fractional-order differential system and adaptive control technique, some sufficient
conditions for guaranteeing the existence of the hybrid projective synchronization are derived. Two
examples are given to show the effectiveness of the proposed methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, many efforts have been devoted to
complex networks due to the wide and potential applications in
various fields, such as, World Wide Web, communication networks,
social organizations, food webs, power grid networks, genetic regula-
tory network, and so on [1–8]. Specifically, synchronization, as an
important and interesting collective behavior of complex networks in
our real life, has drawn increasing attention from different fields such
as information science, biological system, image processing, secure
communication, etc. [9–15]. Up to now, there are many widely-studied
synchronization schemes, which defines the correlated in-time beha-
viors among the nodes in a dynamical network, such as complete
synchronization [16], phase synchronization [17], generalized synchro-
nization [18], projective synchronization [19,20], lag synchronization
[21], cluster synchronization [22], synchronization in multi-agent
systems [23,24]. The synchronization observed in anetwork is usually
called “inner synchronization” as it is a collective behavior within this
network. In reality, there are other kinds of network synchronization,
for example, synchronization between two or more complex networks
regardless if the inner synchronization, which was termed as “outer
synchronization”, always does exist in our lives. Li et al. [25] inv-
estigated the outer synchronization between two unidirectionally
coupled networks and a criterion for the synchronization between
two networks with identical topological structures. Tang et al. [26]
studied the outer synchronization between two networks with

different topological structures by adaptive control method. Wu and
Lu [27] researched the outer synchronization of uncertain complex
delayed networks with adaptive coupling.

The fractional order derivative has its inception in an exchange
letters between L’Hospital and Leibniz in 1965. The questionwas what
would happen if the order of a derivative is not the integer. Compared
with the classical integer-order models, fractional-order models pro-
vide an excellent instrument for the description of memory and
hereditary properties of various materials and processes. It would be
far better if many practical problems are described by fractional-order
dynamical systems rather than integer-order ones. In fact, real-world
processes generally or most likely are fractional-order systems, for
example, dielectric polarization, electrode–electrolyte polarization,
electromagnetic waves, viscoelastic systems, quantitative finance and
diffusion waves [28–31]. The advantageous use of this mathematical
tool is recognized in the modeling of these dynamical systems and the
results demonstrate the importance of fractional calculus andmotivate
the development of new applications. In recent years, research about
the theory and application of fractional calculus has attracted much
interest. Specifically, synchronization of fractional-order chaotic sys-
tems starts to attract increasing attention due to its potential applica-
tions in secure communication and control processing.

Although there are many results about synchronization of com-
plex networks, most efforts have been devoted to complex networks
whose nodes are constructed by integer-order ordinary differential
equations. As we know, the fractional order calculus has many
merits, but due to the limited theories for analyzing the dynamical
systems, the related research is still a challenging topic and the
existing works is still few. For example, Chai et al. [32] investigated
synchronization of general fractional-order complex dynamical
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networks by adaptive pinning method. Yang and Jiang [33] studied
the adaptive synchronization in the drive-response fractional-order
dynamical networks with uncertain parameters. Si et al. [34] studied
the identification problem of fractional-order complex network with
unknown system parameters and network topologies. Wu and Lu
[35] investigated outer synchronization between two different
fractional-order general complex networks.

More recently, coexistence of the hybrid synchronization in
fractional-order chaotic systems was investigated intensively [36,37].
To the best of our knowledge, most of these works were concerned
with the hybrid synchronization only in two coupled chaotic systems,
the hybrid synchronization of two coupled fractional-order networks
of different sizes has not been explicitly considered and studied.

Motivated by the above discussions, in this paper, we will study
the hybrid projective synchronization of two coupled general
fractional-order complex networks with different sizes. In order
to realize the generalized projective synchronization, adaptive
control method is utilized, which has been widely use in control
scheme [38–42]. Based on the stability theorem of fractional-order
differential system, several sufficient conditions for guaranteeing
the existence of the generalized projective synchronization are
obtained.

This paper is organized as follows: in Section 2, some fractional-
order definitions, lemmas are given. In Section 3, fractional-order
complex networks model and hybrid synchronization definitions
are given. In Section 4, the criteria for the hybrid synchronization of
the fractional-order complex networks are obtained. The examples
are given in Section 5, followed by conclusions in Section 6.

Throughout this paper, the following notations are used. ‖U‖ is
the Euclidean norm of a vector; AT means the transpose of the
matrix A; InAℝn�n denotes the identity matrix with dimension n;
� representation Kronecker product of two matrices and As

denotes ðAþAT Þ=2.

2. Model description and preliminaries

2.1. Fraction calculus

The fractional-order integer-differential operator is the gener-
alization of integer-order integer-differential operator, which
could be denoted by a fundamental operator as follows

aD
q
t ¼

dq

dtq; R qð Þ40;
1; R qð Þ ¼ 0;R t
a dτð Þ�q; R qð Þo0;

8>><
>>: ð1Þ

where q is the fractional-order calculus operator which can be a
complex number, a and t are the limits of the operation. There are
some definitions for fractional derivatives and the commonly used
definitions are Grunwald–Letnikou (GL), Riemann–Liouville (RL),
and Caputo (C). In the rest of this paper, the notation aD

q
t is chosen

as the Caputo fractional derivation operator.

Definition 1. The Caputo fractional derivative is define as follows

c
aD

q
t xðtÞ ¼

1
Γðn�qÞ

R t
a ðt�τÞn�q�1xðnÞðτÞdτ; n�1oqon;

dn

dtnxðtÞ; q¼ n;

8<
: ð2Þ

where Γ Uð Þ is the Gamma function which is defined by
Γ zð Þ ¼ R1

0 e� ztz�1dt.
It should be noted that the advantage of the Caputo approach is

that the initial conditions for fractional differential equations with
Caputo derivatives take on the same form as those for integer-
order ones, which have well understood physical meaning.

The following lemmas are needed to derive our main results.

Lemma 1. [34]. Consider the following fractional order system

DqX ¼ f ðXÞ; ð3Þ
where XAℝn, 0oqr1. For the nonlinear fractional order systems
(3), if there exists a real symmetric positive definite matrix P such
that the equation J ¼ XTPDqXr0 always holds for any states
X ¼ x1 tð Þ; x2 tð Þ;…; xn tð Þð ÞT , then system (3) is asymptotically locally
stable.

Lemma 2. [43]. For any vectors x; yAℝn the following matrix
inequality holds: 2xTyrxTxþyTy.

2.2. Network model

In this paper, fractional-order complex network model consist-
ing N nodes are described as the following:

DqxiðtÞ ¼ f ðxiðtÞÞþc
XN
j ¼ 1

aijΓxjðtÞ; i¼ 1;2;…;N1; ð4Þ

where 0oqo1 is the fractional order, xiðtÞ ¼ xi1 tð Þ; xi2 tð Þ;ð
…; xin tð ÞÞT Aℝn is the state variable of the ith node, f : ℝþ � ℝn is
a smooth nonlinear continuous map, A¼ aij

� �
AℝN�N denotes he

coupling configuration matrix; c is the coupling strength, and
Γ ¼ diag ζ1; ζ2;…; ζnð ÞAℝn�n is the inner coupling matrix. The
matrix A is defined as follows: if there exist a connection between
node i and node j ia jð Þ, then aij40; otherwise, aij ¼ 0 and the
diagonal elements of matrix A are define as

aii ¼ �
XN

j ¼ 1;ja i

aij; i¼ 1;2;…;N1; ð5Þ

We refer to model (4) as the drive complex networks. Corre-
spondingly the response complex network with the control inputs
uiðtÞAℝn i¼ 1;2;…;Nð Þ can be rewritten as

DqyiðtÞ ¼ f ðyiðtÞÞþc
XN
j ¼ 1

bijΓyjðtÞþui; i¼ 1;2;…;N2; ð6Þ

where yi tð Þ ¼ yi1; yi2;…; yin
� �T

Aℝn is the response state vector of
the ith node, f , c and Γ have the same meaning as those in Eq. (4),
ui are the controllers to be designed.

3. Mathematical preliminaries

Before starting the main results of this paper, we firstly defined
of the complex networks hybrid synchronization.

Definition 2. [44]. The driving networks (4) and the response
networks (6) are said to realize the hybrid projective synchroniza-
tion if

lim
t-1

‖yiðt;Y0Þ�αxiðt;X0Þ‖¼ 0; ði¼ 1;2;…;NÞ;
lim
t-1

‖xiðt;X0Þ�xjðt;X0Þ‖¼ 0; ði; j¼ 1;2;…;N1Þ;
lim
t-1

‖yiðt;Y0Þ�yjðt;Y0Þ‖¼ 0; ði; j¼ 1;2;…;N2Þ;

8>>><
>>>:

ð7Þ

where N¼ min N1;N2f g, and α is the ratio coefficient.

Assumption 1. [45]. Function class QUAD P;Δð Þ: assume that
P ¼ diagðp1; p2; :::; pnÞ is a positive definite diagonal matrix and
Δ¼ diagðΔ1;Δ2;…;ΔnÞ is a diagonal matrix. f ðxÞ : ℝn-ℝn is contin-
uous. We say f AQUADðP;ΔÞ if and only if the following inequality

ðx�yÞTP f ðxÞ� f ðyÞ�Δðx�yÞð Þr�βðx�yÞT ðx�yÞ ð8Þ
holds for some β40, all x, yAℝn and t40.
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