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a b s t r a c t

Depth-images-based human pose estimation is facing two challenges: how to extract features which are
discriminative to variations in human poses and robust against noise, and how to reliably learn body
joints based on their dependence structure. To tackle the first problem, we propose a novel 3D Local
Shape Context feature extracted from human body silhouette to characterise the local structure of body
joints. To tackle the second problem, we incorporate a graphical model into regression forests to exploit
structural constrains. Experiments demonstrate that our method can efficiently learn local body
structures and localise joints. Compared with the state-of-the-art methods, our method significantly
improves the accuracy of pose estimation from depth images.

& 2015 Published by Elsevier B.V.

1. Introduction

Accurate estimation of human poses is a key step for many
visual applications, such as human computer interaction, smart
video surveillance, character animation and augmented reality. A
nice review on this topic can be found in [1]. Although consider-
able research efforts have been devoted to it, pose estimation is
still a challenging task due to cluttered background, occlusion and
variation in appearance and pose [2]. Most techniques address
these challenges from two aspects: one seeks discriminative and
robust features to fight against noise and variations in appearance
and pose, and the other designs graphical models to utilise
structural information to constrain the distributions of body joints.

With respect to the features for pose estimation, a variety of
discriminative features have been developed [3]. Recently, with
the development of depth sensor techniques (such as Kinect or
time-of-flight sensors), many works focus on extracting features
from depth images [4,5]. A depth image represents depth mea-
surements of the scene [6–8]. Compared with RGB images, depth
images supply much richer geometrical information, facilitating
both the separation of human body from background and the
disambiguation of similar poses. Generally, appearance and shape
are the commonly used features for pose estimation. As to depth-

appearance-based features, Plagemann et al. [4] proposed a
geodesic-distance-based feature, which costs a large amount of
computation for iteratively calculating points of interest, and
Shotton et al. [5] proposed DCF (depth comparison features),
which describe body parts by depth differences at a sequence of
random offsets. Their works yielded state-of-the-art results. Their
features are effective and efficient on depth images, from which
many of later works [9–12] benefited. As to depth-shape-based
features, Li et al. [13] proposed a shape-based feature, termed
3DSC, which utilised depth information to obtain an edge-point
mask and calculated silhouette histograms on this 2D mask to
detect end-points of interest. As extracted on the mask images,
their features lack the 3D information. Furthermore, their frame-
work only processes limited endpoints (e.g. head, hand and foot).
Baak et al. [14] and Ye et al. [15] used point cloud matching
techniques for pose estimation, which are computationally
demanding. To the best of our knowledge, it seems that none of
the shape-based features have achieved a performance compar-
able to DCF yet. In our work, we aim to propose a novel depth-
shape-based feature which can attain satisfactory results.

With respect to the models of human pose, the pictorial structure
model [16] is one of the most popular models, for its effective
representation of articulated objects and its efficient inference algo-
rithm. It is trained to learn the spatial relationship between pairs of
joints, since the location of a joint is well constrained by its connected
joints. At its inference stage, the likelihood of each body joint is
evaluated over the 2D/3D space restricted by the trained model. Many
improvements of this model have been made, and the most relevant
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work goes in either of three directions: to build more reliable body
part (or joint) detectors [17–21], to introduce richer body models [22–
27] or to perform inference [24,28] by imposing temporary con-
straints. In the first direction, many methods tend to be finely tuned to
a specific dataset. In the other two directions, complex models and
inference require extensive computation. As we know, most of these
methods could hardly provide a real-time output due to the complex-
ity of part detection and inference on RGB images. In recent years,
some joint detection algorithms using random forests give real-time
state-of-the-art results [29–33]. However, they infer locations of body
joints either independently [5,10] or relying on some global latent
variables [9], neglecting the dependence between body joints. Dan-
tone et al. [21] designed two-layers regression forests to learn more
reliable joint detectors andmodelled the constraints by using Gaussian
distributions for efficient inference on RGB images. Yu et al. [34]
integrated action detection and cross-modality regression forests for
the estimation of 3D human pose.

In this paper, we propose a novel framework for human pose
recognition. It mainly consists of two modules. Firstly, we propose
a new depth-shape-based feature, termed 3D Local Shape Context
feature (3DLSC), by extending the 2D Shape Context (2DSC) [35] to
3D space, to characterise the location cues between human
silhouette and joints. Different from 3DSC [13], our 3DLSC captures
relative position information of silhouette points in 3D space. Thus
our feature is body-size invariant and efficiently adaptive to
persons with different heights. Experiments demonstrate that
our shape-based features could achieve comparable results with
the widely used DCF for pose estimation on depth images.
Secondly, we propose a combined learning scheme by incorporat-
ing a data-dependent pictorial structure into regression forests.
More specifically, depending on the training data arriving at the
leaf nodes of the regression forests, our model can learn distribu-
tions of each joint and spatial constrains between adjacent joints.
Different from the general pictorial structure [16], our proposal
models relative distributions according to the specific test image.
Compared with the state-of-the-art methods, our proposal can
significantly increase the accuracy of pose estimation.

The rest of the paper is organised as follows. In Section 2, we
present the construction of our 3DLSC feature, which consists of
two steps: silhouette extraction and histogram binning. The details
of our graphical models and regression forests are presented in
Section 3. Finally, experiments and discussion are shown in
Section 4 and conclusion and future work are given in Section 5.

2. 3D local shape context

In this section we present our 3DLSC feature. In [35] the 2DSC
feature was first proposed for shape matching. It has been applied

to pose estimation as it efficiently encodes local information of
human silhouette by using histograms at logarithmic polar
(log-polar) coordinates [36,37,13]. However, it faces two problems:
(1) it is usually noisy in the body silhouette obtained by motion
detection and it is difficult to extract inner edges due to the
ambiguity on clothing texture [36]; (2) it is ill-conditional to
recover 3D poses from 2D silhouettes due to lack of depth
information. To mitigate these problems, we extract our features
from depth images, which not only supply 3D information of
human body but also facilitate the extraction of inner edges. In a
similar spirit to [38] but using a different strategy and targeting a
different task, we develop novel 3D local features by computing
feature histograms at regularly spaced points on the edges of body
silhouette extracted from depth images. Therefore, our feature
construction consists of two steps: silhouette extraction and
histogram binning.

2.1. Silhouette extraction

Given depth image I, we assume that the foreground of human
body is already known. What we need to do is to extract outer and
inner edges from the depth image. To reduce the influence of noise
from depth sensors, we first use a Gaussian filter to smooth the
extracted body shape.

The Gaussian filtering for depth di at pixel pi is defined as

d̂i ¼
1
S

X
jANðiÞ

Gðdstði; jÞ;0;σ2Þdj; ð1Þ

where Gð�Þ is a Gaussian smooth function with mean zero and
variance σ2, N(i) is the 3� 3 neighbourhood of pi, dstði; jÞ indicates
the distance between points pi and pj in 3D space, and S is a
normalising constant. The Gaussian filter can effectively reduce
noise in depth measurements; Fig. 1 shows the effect of smoothing
on silhouette extraction.

A body silhouette on the depth image is a point set of edge
points. In order to extract silhouette points, depth values of
background pixels are set to 1. As a result, the set of silhouette
points E is obtained by using a local depth extrema function:

E¼ pi : max
jANðiÞ

ðd̂j� d̂iÞ4td

� �
; ð2Þ

where parameter td is a depth threshold set to 4 cm in our
experiments.

There are often many thousands of points in E, which not only
are too dense for shape description but also cost a large amount of
computation. Hence, we uniformly down-sample E to a subset E0

of N points with N¼300–500.

Frontal view Rotated 30o
Frontal view Rotated 30oDepth image

Fig. 1. Human body silhouette extraction of human body: (a) a human body depth image; (b) silhouette points without smoothing; (c) silhouette points after smoothing.
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