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a b s t r a c t

This paper proposes a graph regularized low-rank sparse representation recovery (GLRSRR) method for
sparse representation-based robust face recognition, in which both the training and test samples might
be corrupted because of illumination variations, pose changes, and occlusions. On the one hand, GLRSRR
imposes both the lowest-rank and sparsest constraints on the representation matrix of the training
samples, which makes the recovered clean training samples discriminative while maintaining the global
structure of data. Simultaneously, GLRSRR explicitly encodes the local structure information of data and
the discriminative information of different classes by incorporating a graph regularization term, which
further improves the discriminative ability of the recovered clean training samples for sparse
representation. As a result, a test sample is compactly represented by more clean training samples
from the correct class. On the other hand, since the error matrix obtained by GLRSRR can accurately and
intuitively characterize the corruption and occlusion of face image, it can be used as occlusion dictionary
for sparse representation. This will bring more accurate representations of the corrupted test samples.
The experimental results on several benchmark face image databases manifest the effectiveness and
robustness of GLRSRR.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Face recognition (FR) has caught a lot of attention in computer
vision and machine learning fields due to its numerous real-world
applications such as card identification, access control, security
monitoring, etc. As we all know, although face images are usually
with high dimensionality, they possibly reside on a low dimen-
sional subspace. Many subspace learning methods, such as prin-
ciple component analysis (PCA) [1], linear discriminant analysis
(LDA) [2], locality preserving projections (LPP) [3], marginal Fisher
analysis (MFA) [4], local discriminant embedding (LDE) [5], have
been proposed for reducing the dimension of face image. Subse-
quently, a classifier, such as the nearest neighbor classifier (NNC)
or support vector machine (SVM), is usually used for classification.
Although subspace learning methods have been successfully used
in FR, they are not robust to face image with corruption [6], such as
occlusion, disguise and pixel contamination. Especially, when the

amount of training samples is small, the learned subspace will be
deflective [7].

Recently, a new robust FR framework, namely sparse rep-
resentation-based classification (SRC) [8], was presented. SRC spa-
rsely encodes a test sample over a dictionary consisting of the
training samples by l1-norm optimization techniques, and then
classifies a test sample to the class that generates the minimal
reconstruction error. When all the training samples are under-
controlled (i.e., under reasonable pose and illumination, no cor-
ruption and occlusion), SRC is robust to test sample with occlusion
and corruption, and achieves a high face recognition accuracy.
Unfortunately, the performance of SRC might be dropped when
some training and test samples are both corrupted [9]. Recently,
Zuo et al. [10] declared that using non-convex lp-norm sparse
coding can obtain better results than using the convex l1-norm
sparse coding for image classification problems, and proposed a
generalized iterated shrinkage algorithm (GISA) for lp-norm non-
convex sparse coding.

To address the problem that the training samples are cor-
rupted, Ref. [9] adopts low-rank recovery (LR) [11] technique to
recover the clean low-rank data matrix from the corrupted data
matrix, and then uses the clean data matrix as dictionary for SRC
to classify a test data. Since LR assumes all the data residing on a
single subspace [12], it might not work well while the data come
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from multiple subspaces. Therefore, Ref. [9] uses LR to remove
noises from training data class by class. This procedure is compu-
tationally expensive for a great number of classes. In addition,
although Ref. [9] introduces a structure incoherence regularization
term into LR to promote the incoherence between different
classes, the data structure might not be maintained. Recently,
Zhao et al. [13] proposed a generative RPCA model to recovery
low-rank data matrix under the Bayesian framework by modeling
data noise as a mixture of Gaussians, which is able to fit a wide
range of noises. Liu et al. [12] presented a Low-rank representation
(LRR) method, which can effectively reveal the global structure of
data that are drawn frommultiple subspaces. This implies that LRR
can effectively recover the clean data from the corrupted data by
correcting the noises and corruptions [12]. Nevertheless, LRR does
not consider the local structure of data while recovering the
subspace, which perhaps make the recovery performance deterio-
rated. To solve this issue, Lu et al. [14] incorporated a graph
regularization term into the LRR to encode the local structure
information of data. Recently, Zhang et al. [15] also used LR [11] to
decompose the feature vectors of images within each class into a
low-rank matrix and a sparse error matrix, and then used LLC [16]
method to encode the feature vectors of images over the dic-
tionary that is composed of the low-rank matrix and sparse error
matrix. Finally, they used linear SVM for image classification.
Additionally, Zhang et al. [17] proposed a low-rank sparse coding
(LRSC) method, which considers the local structure information
among features of an image for image classification, and repre-
sents densely sampled SIFT [18] descriptors as a low-rank and
sparse linear combination of codewords.

In the case of test sample with corruption or occlusion, SRC
introduces an identity matrix as occlusion dictionary to cope with
corruption and occlusion of test sample. However, the dimensionality
of the identity matrix is usually very high, which makes the sparse
coding procedure computationally expensive [19]. To solve this issue,
Deng et al. [20] proposed an extended SRC (ESRC) method, in which
an intra-class variant matrix, determined by subtracting the class
centroid from the samples of the same class, is used as occlusion
dictionary. The dimensionality of occlusion dictionary used in ESRC is
much smaller than that of occlusion dictionary used in SRC. However,
the intra-class variant matrix might not accurately depict corruption
and occlusion of face image. In [21], the sparse error matrix obtained
by LR [11] is used as occlusion dictionary, and the superior FR
performance has achieved. Recently, Yang and Zhang et al. [22] poi-
nted out it may not be enough that SRC [8] measures the representa-
tion fidelity by l2-norm or l1-norm of coding residual, because such
fidelity term assumes that the coding residual obeys Gaussian or
Laplacian distribution, which may not be true in real-world applica-
tions. Based on this viewpoint, they proposed a robust sparse coding
(RSC) [22] method for robust FR by modeling the sparse coding as a
sparsity-constrained robust regression problem. Subsequently, they
also proposed a regularized robust coding (RRC) [23] method for
robust FR, which is a substantial extension of RSC. Moreover, He et al.
[24] replaced the representation fidelity term of SRC with the
correntropy based Gaussian-kernel fidelity term and proposed a cor-
rentropy-based sparse representation (CESR) method for robust FR.
Although both RSC [22], RRC [23], and CESR [24] are more robust to
deal with the test sample with corruption or occlusion, they also
need all the training samples under-controlled.

In this paper, we present a graph regularized low-rank sparse
representation recovery method to address the problem of sparse
representation-based robust FR, in which both training and test
samples might be corrupted. As mentioned above, using the corr-
upted training samples as dictionary may lead to poor FR perfor-
mance. To overcome this issue, we construct a graph regularized
low-rank sparse representation recovery (GLRSRR) model to recover
the clean training samples from the corrupted training samples.

Unlike LRR merely imposes the lowest-rank constraint on the
representation matrix of the training samples, GLRSRR imposes both
lowest-rank and sparsest constraints on the representation matrix of
the training samples. As observed in [25], low-rankness can reveal
the global structure of data, while sparsity helps to identify the class
to which a data belongs. Hence, the recovered clean training samples
are discriminative while maintaining the global structure of data.
Furthermore, a supervised nearest neighbor graph is built to encode
the local structure information of data and the discriminative
information of different classes, and then a graph regularization
term is incorporated into the GLRSRR model. By considering both the
local structure information and discriminative information, the
recovered clean training samples have more discriminative ability
for sparse representation. As a result, using the recovered clean
training samples to constitute a dictionary, a test sample is compactly
represented as linear combination of more clean training samples
from the correct class. In addition, since the error matrix obtained by
GLRSRR can accurately and intuitively characterize the corruption
and occlusion of face image, it can be used as occlusion dictionary to
deal with corruption or occlusion of test sample. This will bring more
accurate representations of the corrupted test samples.

It is worth noting that there are some mainly differences
between our work and the works of [15,17], though our work is
closely related to them. The mainly differences are as follows.
(a) Our work designs a novel recovery method, namely GLRSRR, to
separate the corrupted training data matrix into a clean training
data matrix and a sparse error matrix, while [15] uses the existing
method of LR [11] to decompose the training feature matrix into a
low-rank feature matrix and a sparse error matrix; (b) The work of
[17] proposed a low-rank sparse coding (LRSC) method, which is
utilized to encode the local features of a sub-region in an image
over a given codebook, while our proposed GLRSRR method aims
to recover the clean training data matrix from the corrupted
training data matrix by using the corrupted training data matrix
itself as dictionary. In other words, GLRSRR is used for recovery but
LRSC [17] for coding; (c) The LRSC [17] imposes both the lowest-
rank and sparsest constraints on the representation matrix, while
our GLRSRR not only imposes both lowest-rank and sparest
constraints on the representation matrix, but also introduces a
graph regularization term to make the representations more
discriminative. That is to say, the optimization problem of GLRSRR
is different from that of LRSC.

Several advantages of our proposed GLRSRR method are sum-
marized as follows:

� It recovers the clean training samples with more discriminative
ability from the corrupted training samples by not only imp-
osing both lowest-rank and sparsest constraints on the repre-
sentation matrix of the training samples, but also introducing a
graph regularization term to explicitly encode the local struc-
ture information of data and the discriminative information of
different classes.

� The error matrix obtained by GLRSRR model can accurately
depict the corruption and occlusion of face image. So it can be
used as occlusion dictionary to deal with the corruption or occ-
lusion of test sample.

� Using the recovered clean training data matrix and the error
matrix as dictionary and occlusion dictionary, a corrupted test
sample can be sparsely represented by more clean training
samples from the correct class and the corresponding errors. This
brings a more accurate identification of the corrupted test sample
for SRC.

The remainder of this paper is outlined as follows. Section 2
reviews related works on SRC algorithm and low-rank matrix recovery
algorithms. Section 3 presents our GLRSRR method for sparse
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