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a b s t r a c t

This paper addresses the multistability problem of discrete-time delayed Cohen–Grossberg neural
networks (DDCGNNs) with second-order synaptic connectivity. For the neural networks with non-
decreasing saturated activation functions possessing 2 corner points, based on the partition space
method and reduction ad absurdum, several sufficient conditions are derived to ensure that n-neuron
second-order DDCGNNs can have 2n locally exponentially stable equilibrium points. Then, the analyses
are extended to nondecreasing saturated activation functions with 2r corner points and some sufficient
conditions are given to guarantee that the n-neuron DDCGNNs can have ðrþ1Þn locally exponentially
stable equilibrium points. Moreover, some conditions are obtained to ensure the existence of locally
exponentially stable equilibrium point in a predesigned region. Finally, three examples are carried out to
show the effectiveness of the proposed criteria.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cohen–Grossberg neural networks (CGNNs), including Hopfield
neural networks and cellular neural networks as their special case,
were firstly proposed by Cohen and Grossberg in 1983 [1]. Due to
their potential applications in associative memory, image proces-
sing, pattern recognition, and some other areas, the studies of this
kind of neural networks and their applications have attracted a
tremendous amount of research interests [1–13].

As is well known, the stability of equilibrium point is pre-
requisite for a successful application of dynamic system. In the
past decades, monostability of CGNNs have been extensively
investigated by many researchers [14–16]. However, in the appli-
cations of associative memory storage and image processing, it is
desired that CGNNs have as many equilibrium points as possible
[5,17–20]. In detail, by using the Cauchy convergence principle and
the partition space method, [5,17] discussed the multistability and
the multiperiodicity of CGNNs with time delays. The multiperio-
dicity of a class of high-order CGNNs was discussed in [18]. Wang
et al. [19,20] investigated the stability in Lagrange sense for non-

autonomous CGNNs with mixed delays and for autonomous
CGNNs with mixed delays, respectively.

Note that, only first-order synaptic connectivity is taken into
consideration in these studies on CGNNs with the exception of
[18]. As revealed in [6,21–25], second-order or high-order neural
networks have been shown with greater storage capacity, stronger
approximation property, faster convergence rate, and higher fault
tolerance than traditional first-order neural networks. Besides, all
the above-mentioned models act in a continuous-time fashion,
few papers discuss the multistability of discrete-time CGNNs
except for the monostability of discrete-time CGNNs [26–30]. In
addition, although the discrete-time analogues reflect the
dynamics of their continuous-time counterparts to some extent,
the discretization cannot maintain the dynamics of the
continuous-time counterpart even for a small sampling period
[31]. Therefore, it is quite necessary to do some investigations on
the dynamics of discrete-time CGNNs.

Motivated by the above discussion, the multistability of
second-order discrete-time delayed Cohen–Grossberg neural net-
works (SODDCGNNs) are studied in this paper for the first time.
Some sufficient conditions are presented to ensure that n-neuron
SODDCGNNs with nondecreasing saturated activation functions
with 2 corner points can have 2n locally exponentially stable
equilibrium points. When the amplification functions in the
CGNNs equal to 1 and the second-order synaptic connectivities
are absent, the obtained conditions are less conservative than the
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results by reducing from the multiperiodicity result in [32] to the
multistability case. When the amplification functions in the
CGNNs equal to 1 and CGNNs have first-order delayed synaptic
connectivities, the obtained conditions are also less conservative
than the results by reducing from the multiperiodicity result in
[33] to the multistability case. The multistability results are further
extended to the SODDCGNNs with nondecreasing saturated acti-
vation functions with 2r corner points and it is shown that there
are ðrþ1Þn locally exponentially stable equilibrium points in this
case. Moreover, some sufficient conditions are obtained to guar-
antee the existence of a unique stable equilibrium point in a
designated region. Some examples are also given to illustrate the
effectiveness of the proposed results and to show the less
conservatism of the results comparing with the multistability case
of [32,33].

The remaining part of this paper is organized as follows. In Section 2,
themodel and some preliminaries are given. In Section 3, main results of
this paper are presented. In Section 4, three illustrative examples are
provided with simulation results. Finally, some conclusions are made in
Section 5.

Notation: The notations Z and Zþ denote the set of all integers
and positive integers, respectively. ½a; b� ¼ fa; aþ1;…;b�1; bg,
where a, bAZ, arb.

2. System description and preliminaries

Consider a class of SODDCGNNs by the system of difference
equations:

xiðkþ1Þ ¼ xiðkÞ�aiðxiðkÞÞ bixiðkÞ�
Xn
j ¼ 1

cijf jðxjðkÞÞ
2
4

�
Xn
j ¼ 1

dijf jðxjðk�τjðkÞÞÞ� Ii

�
Xn
j ¼ 1

Xn
l ¼ 1

eijlf jðxjðk�δjðkÞÞÞf lðxlðk�δlðkÞÞÞ
3
5;

i¼ 1;2;…;n; k¼ 0;1;…; ð1Þ
where nZ2 is the number of neurons, xi(k) denotes the state
variable of the ith neuron at time k, aið�Þ represents amplification
function, and bi40. cij, dij and eijl are the first-order and second-
order connection weights, respectively. Ii is the constant input. f jð�Þ
is the neuron activation function. τjðkÞ and δjðkÞ are time delays of

jth neuron at time k and satisfy 0rτjðkÞrτj and 0rδjðkÞrδj,
respectively, where τj and δj are nonnegative integers. Initial
condition of (1) is assumed to be xðsÞ ¼ ϕðsÞ, sA ½�τ; k0�, τ¼
max0r jrnfτj; δjg, where ϕðsÞ ¼ ðϕ1ðsÞ;ϕ2ðsÞ;…;ϕnðsÞÞT and ϕiðsÞA
Cð½�τ; k0�;DÞ is a continuous function, Cð½�τ; k0�;DÞ is the space
of all continuous functions mapping ½�τ; k0� into D with the norm
defined by JϕJ ¼max1r irnfsup� τr srk0 jϕi j g.

Remark 1. Note that when aið�Þ ¼ 1, dij ¼ 0, i, j¼ 1;…;n, and Ii
replaced by Ii(k), then neural networks (1) reduce to the following
second-order discrete-time delayed neural networks (SODDNNs),
which are investigated in [33]:

xiðkþ1Þ ¼ xiðkÞ�bixiðkÞþ
Xn
j ¼ 1

cijf jðxjðkÞÞþ IiðkÞ

þ
Xn
j ¼ 1

Xn
l ¼ 1

eijlf jðxjðk�δjðkÞÞÞf lðxlðk�δlðkÞÞÞ: ð2Þ

Moreover, when aið�Þ ¼ 1; eijl ¼ 0, i, j, l¼ 1;…;n, Ii replaced by Ii(k),
that is, there is no second-order synaptic connectivity in (1), then
neural networks (1) reduce to the following first-order discrete-
time delayed neural networks (FODDNNs), which are investigated
in [32]:

xiðkþ1Þ ¼ xiðkÞ�bixiðkÞþ
Xn
j ¼ 1

cijf jðxjðkÞÞþ
Xn
j ¼ 1

dijf jðxjðk�τjðkÞÞÞþ IiðkÞ: ð3Þ

Therefore, SODDCGNNs (1) studied in this paper possess the
characteristics of being general in structure.

It is noted that the characteristics of activation functions have
key effect on the existence and the stability of equilibrium points
for neural networks. In some existing studies, the standard
activation function was usually assumed to be [34,35]:

f iðsÞ ¼
j sþ1j � j s�1j

2
: ð4Þ

In order to increase the flexibility when designing activation
functions, the standard activation function gradually gave way to
the following activation functions [36,37]:

f iðsÞ ¼

ui if �1osopi;
vi�ui

qi�pi
ðs�piÞþui if pirsrqi;

vi if qiosoþ1;

8>>><
>>>:

ð5Þ

where ui, vi, pi, qi are constants and satisfy uiovi, pioqi.
In this paper, we consider a general class of activation functions

as follows, which is employed in [36,37]:

f iðsÞ ¼

u1
i if �1osop1i ;

u2
i �u1

i

q1i �p1i
ðs�p1i Þþu1

i if p1i rsrq1i ;

u2
i if q1i osop2i ;

� � � � � �
urþ1
i �ur

i

qri �pri
ðs�pri Þþur

i if pri rsrqri ;

urþ1
i if qri osoþ1;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð6Þ

where rZ1, uli, pli, qli are constants and satisfy u1
i ou2

i o⋯ourþ1
i ,

�1op1i oq1i op2i oq2i o⋯opri oqri oþ1. It is well known that
the number of the corner points of activation functions is the key
factor in increasing the number of equilibrium points for neural
networks with piecewise linear activation functions. Note that,
activation functions (6) have 2r corner points and specifically,
when r¼1, then activation functions (6) reduce to (5).

In addition, the following definition and assumption are useful
for the main results.
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Fig. 1. Trajectories of state variables of the system in Example 1, Case 1.
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