
Gene expression data clustering based on graph regularized
subspace segmentation

Xiaoyun Chen n, Cairen Jian
College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350116, China

a r t i c l e i n f o

Article history:
Received 16 November 2013
Received in revised form
7 June 2014
Accepted 9 June 2014
Communicated by L. Kurgan
Available online 17 June 2014

Keywords:
Gene expression data
Clustering
Graph regularization
Subspace segmentation

a b s t r a c t

Gene expression data clustering offers a powerful approach to detect cancers. Specifically, gene
expression data clustering based on nonnegative matrix factorization (NMF) has been widely applied
to identify tumors. However, traditional NMF methods cannot deal with negative data and easily lead
to local optimum because the iterative methods are adopted to solve the optimal problem. To avoid
these problems of NMF methods, we propose graph regularized subspace segmentation method (GRSS)
for clustering gene expression data. The global optimal solution of GRSS can be achieved by solving a
Sylvester equation. Experimental results on eight gene expression data sets show that GRSS has
significant performance improvement compared with other subspace segmentation methods, traditional
clustering methods and various extensions of NMF.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cancer has already been one of the most serious diseases
threatening public health for several decades. Precise and reliable
identification of cancers is important for cancer diagnosis and
treatment [1]. The different types of cancer can be distinguished
based on the patterns of gene activity in the tumor cells by the
microarray technology. With the rapid development of DNA micro-
array technology, it is now possible to measure expression levels of
thousands of genes simultaneously. DNA microarray technology has
changed many aspects of biological research [2]. Increasingly, the
challenge is to gain insight into the mechanisms of biological
processes and human diseases from such gene expression data
[10]. Over the past few decades, a number of methods have been
proposed and applied to gene expression data [1,3–6]. The biggest
challenge of studying gene expression data lies in small sample sizes
and high data dimensions, i.e. the ‘large p, small n’ problem. The
sample size is usually from tens to hundreds while the genes often
amount to more than one thousand, even to tens of thousands. In
despite of these difficulties, many classification and clustering
methods have been used to analyze gene expression data. In this
paper, we focus on cluster analysis for gene expression data.

Clustering methods have been proved to be helpful to understand
gene function and tumor typology. Gene-based clustering algorithms
[7,8] group thousands of genes into several smaller clusters to find out
different levels of gene expression, which is useful for understanding

the functions of many genes. Sample-based clustering methods [1,5,6]
cluster samples with the same or similar expression pattern to faci-
litate the discovery of new tumor types.

Sample-based clustering is a challenging issue due to the curse
of dimensionality. Many clustering methods, such as hierarchical
clustering (HC), self-organizing map (SOM), nonnegative matrix
factorization (NMF) and its extension models, have been success-
fully used in gene expression data [6,9–13]. Nonnegative matrix
factorization aims to find two nonnegative matrices whose pro-
duct provides a good approximation for the original matrix [14].
Some extensions of NMF methods based on graph regularization
have been proposed and applied to such fields as image recogni-
tion [15,16] and disease diagnosis [17]. Recently, NMF has been
introduced to analyze the gene expression data, the study of
Brunet et al. showed that NMF is more accurate than HC and
more stable than SOM [10], and the accuracy of the gene expres-
sion data clustering is improved via sparse NMF [11]. More other
NMF-based clustering algorithms for gene expression data can also
be found in [6,12,13]. However, the standard NMF only works for
nonnegative data, which undoubtedly limits its applications in
gene expression data clustering. Fortunately, Ding et al. proposed
convex nonnegative matrix factorization algorithm (CNMF) and
semi-nonnegative matrix factorization algorithm (SNMF), which
can be used on both positive and negative data sets [18]. What's
worse, the NMF-based methods usually lead to local optimum
because the iterative optimization procedures are adopted.

The main purpose of this paper is to solve those problems of
NMF-based clustering methods mentioned above. Subspace seg-
mentation has been shown to be a powerful tool for clustering
image data set [19–21]. If gene expression data set in the same
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cluster is treated as a subspace, we can use subspace segmentation
to cluster gene expression data. However, the state-of-the-art
subspace segmentation methods fail to discover the intrinsic
geometrical structure of the data space, which is important to
the real applications [15]. In this paper, we propose a novel graph
regularized subspace segmentation method which makes the
mapping function of subspace segmentation as smooth as possi-
ble. We also develop a global optimization scheme to solve the
objective function by using a Sylvester equation. To the best of our
knowledge, the subspace segmentation method has not been used
to cluster the gene expression data yet.

The organization of the rest of this paper is as follows. In Section 2,
we review some related work, such as subspace segmentation,
normalized cuts and some extensions of nonnegative matrix factor-
ization. Section 3 presents our graph regularized subspace segmenta-
tion method. In Section 4, experiments on gene expression data
clustering are conducted. Conclusions are made in Section 5.

2. Related work

2.1. A brief review of subspace segmentation

Subspace segmentation is an important clustering method for
machine learning, which has been successfully applied in machine
vision and other fields, i.e. clustering and image representation
[19,20,22].Given a data set drawn from a union of subspaces, the
target of subspace segmentation is to group the data set into
clusters with each cluster corresponding to a subspace [19]. The
mathematical definition of this description is

Definition 1. (Subspace segmentation) [20]
Given a data set X ¼ ½X1; :::;Xk� ¼ ½x1; :::; xn�Aℝd�n, which drawn

from a union of k subspaces fSigki ¼ 1, where d is the feature
dimension and n is the sample size. Let Xi be a collection of ni
data points drawn from the subspace Si, n¼∑k

i ¼ 1ni. The task is to
segment the data set according to the underlying subspaces they
are drawn from.

In the past two decades, many subspace segmentation methods
have been proposed. Existing works on the subspace segmentation
can be roughly divided into four categories: algebraic methods,
statistical methods, iterative methods and spectral clustering-
based methods [20]. A review of subspace segmentation can be
found in [21].

The important task of spectral clustering-based subspace seg-
mentation methods is to find an affinity matrix Z, where Zij
measures the similarity between data points xi and xj. A common
similarity measure between the two data points is Zij ¼ exp
ð�‖xi�xj‖=σÞ; σ40. However, this method cannot characterize
the structure of data from subspaces [20]. Many recent works on
the subspace segmentation proposed some new methods to
construct the affinity matrix, such as Low Rank Representation
(LRR) [19] and Least Square Regression (LSR) [20]. These methods
express each data point xi as a linear combination of all other data
points xi ¼∑ja iZijxj, and use the representational coefficient
Zij
�� ��þ Zji

�� ��� �
=2 to measure the similarity between data points xi

and xj. LRR and LSR use different regularizations on Z, which lead
to different affinity matrices.

LRR is a low rank representation method, the goal of LRR is

min
Z

rankðZÞ s:t: X ¼ XZ ð1Þ

where rank(Z) is the rank of Z, the solution of this problem is NP-
hard. In [19], the nuclear norm is used to instead of rank(Z). Thus
LRR is used instead to solve the following problem:

min
Z

‖Z‖ n s:t: X ¼ XZ ð2Þ

where ‖Z‖n is the nuclear norm of Z, defined as the sum of all the
singular values of Z. It can be further extended to a noisy case:

min
Z

‖X�XZ‖2;1þλ‖Z‖n ð3Þ

where λ40, ‖Z‖2;1 is l2;1 norm of Z, defined as the sum of the l2
norm of each column. More details about LRR can be found in [19].

LSR minimized the Frobenius-norm of Z:

min
Z

‖Z‖F s:t: X ¼ XZ ð4Þ

Its extended model for noisy case is as follows:

min
Z

‖X�XZ‖2F þλ‖Z‖2F ð5Þ

where λ40 and ‖Z‖F is the Frobenius-norm of Z. More details
about LSR can be found in Ref. [20].

2.2. Normalized cuts method [23]

Given a set of data points, a nice way of representing the data is
in form of weighted graph G¼(V,E). The nodes of the graph are the
data points, and an edge is formed between every pair of nodes.
The weight on each edge w(i, j) is the similarity between nodes
i and j. Assume A and B are the two disjoint subsets of G, A [ B¼ V
and A \ B¼∅. In graph theory, the dissimilarity between A and B
is called cut, defined as

cutðA;BÞ ¼ ∑
iAA;jAB

wði; jÞ ð6Þ

The optimal bipartitioning of a graph is the one that minimizes
this cut value. One of the most common segmentation approaches
is Normalized Cuts method [23], the objective function is

NcutðA;BÞ ¼ cutðA;BÞ
assoðA;VÞþ

cutðA;BÞ
assoðB;VÞ ð7Þ

where assoðX;V Þ ¼ ∑
uAX;tAV

wðu; tÞ. However, the problem in (7) is

NP-hard. Normalized Cuts method relaxes y to take on arbitrary
values, and then minimize the relaxed cost as follows:

NcutðyÞ ¼ yT ðD�WÞy
yTDy

ð8Þ

where W is a symmetrical matrix with W(i,j)¼w(i,j) and D is a
diagonal matrix with Dði; iÞ ¼∑jwði; jÞ.

The solution of (8) can be solved by the generalized eigenvalue
system

ðD�WÞy¼ λDy ð9Þ
Let z¼D1=2y and rewrite (9) as

D�1=2ðD�WÞD�1=2 ¼ λz ð10Þ
We can segment the graph by using z. More details about Normal-
ized Cuts method can be found in [23].

2.3. Some extensions of NMF

Nonnegative matrix factorization has been successfully applied
in image recognition, text analysis and other fields. Two repre-
sentatives of NMF variants are convex nonnegative matrix factor-
ization (Convex NMF) and semi-nonnegative matrix factorization
(Semi-NMF) [18], because they removed the non-negative con-
straints of the input data set.

Convex NMF can be expressed as follows:

min
U;V

‖X�XUV‖2F s:t U; VZ0 ð11Þ

and Semi-NMF can be expressed as below:

min
U;V

‖X�UV‖2F s:t VZ0 ð12Þ
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