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a b s t r a c t

Many real-world applications expose the nonlinear manifold structure of the lower dimension rather
than its high-dimensional input space. This greatly challenges most existing clustering and representa-
tive selection algorithms which do not take the manifold characteristics into consideration. The
performance of the corresponding learning algorithms can be greatly improved if the manifold structure
is considered. In this paper, we propose a graph-based k-means algorithm, GKM, which bears the
simplicity of classic k-means while incorporating global information of data geometric distribution. GKM
fully exploits the intrinsic manifold structure for appropriate data clustering and representative
selection. GKM is evaluated on both synthetic and real-life data sets and achieves very impressive
results compared to the state-of-the-art approaches, including classic k-means, kernel k-means, spectral
clustering, and clustering through ranking and for representative selection. Given the widespread
appearance of manifold structures in real world problems, GKM shows promising potential for
partitioning manifold-distributed data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is aimed to divide a set of samples X ¼ fx1; x2;…; xng
into K disjointed subsets X1;X2;…;XK so that points in the same
subset share common properties while points which belong to
different subsets do not share these properties. There are many
algorithms available for performing this task, with k-means [1]
being the most popular because of its properties as follows: it can
effectively partition data with Gaussian-like distributions; it is
intuitive and easy to implement; its implementation is of linear
computational complexity, etc. However, k-means also exhibits
typical disadvantages for manifold distributed data sets and our
motivation for extending k-means to a manifold algorithm is based
on the following observations. (1) Recently, it was widely acknowl-
edged in the data analysis and machine learning communities that
many real world data sets, such as face images, voice spectrum,
hand-writing digital images and document contents, stringently
obey the low-rank rules, which means that they are distributed on
a manifold whose dimensionality is often much lower than the
ambient space [2,3]. The classic k-means algorithm, CKM, does not
take this important characteristic into account and thus performs

poorly when dealing with such data sets. (2) The cluster centers
(or prototypes) given by CKM are generally not members of a data
set and thus cannot be used directly for many applications, such as
video and text summarization [4,5], which aim to choose a small
subset of frames or sentences that best describe the overall
contents. Compared to CKM, the kernel k-means [6], KKM, in most
cases, yields better results by mapping samples to a possibly much
lower dimensional space than that in the input space, in which the
manifolds of different classes are separable. Unfortunately, such a
perfect mapping may not exist in practice, nor is it clear what
kinds of mapping exist for a given data set.

Inspired by the isometric feature mapping (isomap)-based
nonlinear dimension reduction algorithm [3] and the manifold
ranking algorithm [7], we propose a graph-based k-means algo-
rithm, GKM, to overcome the above disadvantages by taking the
geometric characteristics of data distribution into account. Parti-
cularly, GKM can fully exploit the underlying manifold structure of
a data set to produce better clustering results and, meanwhile,
identify a suitable data point representative (or centroid) for each
subset. GKM also retains the advantages of CKM, such as ease of
implementation, intuitive and low computational complexity.
Extensive experiments conducted on both synthetic and real-
world data sets validate that GKM is very effective for manifold
clustering with appropriate representative selection.
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The remainder of this paper is organized as follows: Section 2
reviews the related works in nonlinear manifolds clustering and
representative selection and Section 3 briefly reviews the classic k-
means algorithm. Section 4 presents our graph-based k-means
algorithm. Finally, the simulations and comparisons are presented
in Section 5, followed by discussions and conclusions in Section 6.

2. Related works

Nonlinear manifold clustering and representative selection are
very challenging topics in machine learning. The work in [8,9]
extends mean shift to nonlinear manifold clustering and performs
well in motion segmentation, but it is restricted to analytic
manifolds. Goh and Vidal [10] only consider separated nonlinear
manifold clustering. In recent years, spectral clustering [11–15]
and manifold clustering algorithms [16–18] have been proposed to
handle general manifold-distributed data sets. These approaches
either do not present a meaningful subset of data points which can
mostly represent the data set or need a complicated optimization
process. Other algorithms have been specially designed for the
selection of representative data points [5,4] on the condition
of solving an unsmooth optimization problem, thus suffering
from high computational costs in dealing with large data sets.
In addition, they also do not present a clear description of data
clusters and thus cannot tell which points are best represented by
which representative. For other similar data-driven researches and
applications, we recommend the recent results in [19,20]. Very
limited work has been conducted on k-means for manifolds,
and as yet, this area has not been fully exploited. The work in
[21] is restricted to data on sphere and [22] aims to analyze the
reconstruction error and learning rate of k-means on manifolds
but does not provide a concrete algorithm for clustering.

There are also studies of k-means on graph. In [23] Euclidean
distance and centroid are replaced by graph edit distance and the
so-called mean graph respectively, but the computational cost of
computing both graph edit distance and mean graph are very high
and thus make the algorithm not suitable for large data sets. In
[24] the classic k-means is just utilized as a post-processing
method after thresholding the sequence of edge lengths that
added to the minimal spanning tree by Prims algorithm to obtain
the final clusters.

In contrast, in this paper we make two essential changes to the
classic k-means for dealing with nonlinear manifold data. Particu-
larly, we first extend the centroid concept of point cloud in
Euclidean geometry to the centroid of manifold in Riemannian
geometry. Then, borrowing from graph-based semi-supervised
learning method, a new random walk model, the tired random
walk model which is capable of describing the similarity between
points on nonlinear manifold, is proposed to determine the
centroid–member relationships on graph.

3. Review of the classic k-means clustering algorithm

Let X ¼ fx1; x2;…; xngARd be a sample set to be partitioned into
K groups and Y ¼ ðy1; y2;…; ynÞ; yiAf1;2;…;Kg be the label vector
in which each component gives the class label of the correspond-
ing sample in X . Clustering is aimed to partition X into K
disjointed subsets X1;X2;…;XK so that samples in the same
subset have same class labels, i.e. yi ¼ k; xiAXk; kAf1;…;Kg.
We denote by Ck ¼ fi1; i2;…; ijCk jg the index set of elements in
subset Xk.

In classic k-means (CKM), the algorithm updates iteratively the
cluster centroids fc1; c2;…; cKg and index sets Ck; k¼ 1‥K . For a
particular cluster, the centroid of the cluster is updated by simply

averaging the memberships over its members, and the member-
ship of a sample is determined by the nearest Euclidean distance
from it to all the centroids. Mathematically, the algorithm updates
the cluster centroid by

ck ¼
1
jCkj

∑
iACk

xi ð1Þ

After all centroids are updated, the algorithm re-computes the
Euclidean distance dEðx; yÞ ¼ ‖x�y‖2 between each sample and all
the cluster centroids and labels the sample as a member of the
cluster whose centroid achieves the smallest Euclidean distance

yi ¼ arg min
k ¼ 1…K

dEðxi; ckÞ ð2Þ

In the first iteration, the algorithm randomly chooses K points
fc1; c2;…; cKg to be the initial centroids. Thereafter, these two steps
iterate alternatively until the algorithm converges.

4. A graph k-means manifold clustering algorithm

In this section, we propose a graph-based k-means algorithm,
GKM, which takes the intrinsic manifold structure into account.
Similar to classic k-means, GKM also has two essential steps,
updating centroids and updating the samples membership, but
these steps differ in nature from their counterparts in the classic
k-means. We also present an initialization method to obtain a
group of high quality initial centroids. These are described in detail
as follows.

4.1. Updating centroids

In the classic k-means, the k-th centroid obtained by Eq. (1) is
the coordinates mean of the point cloud. This is the classic
centroid concept in Euclidean geometry. Here we extend this
concept to Riemannian geometry, i.e. computing the centroid of
a manifold. Note that the centroid in Eq. (1) is actually the optimal
solution of the following optimization problem:

ck ¼ arg min
xARd

1
2
∑

iACk
dEðx; xiÞ; k¼ 1…K ð3Þ

where dEðx; xiÞ ¼ ‖x�xi‖2 is the Euclidean distance. For data points
sampled frommanifolds, this optimization has two defects: (a) the
centroid may move off the manifold and thus it cannot represent
the underlying data distribution well; (b) the Euclidean distance
cannot reflect the true relationships between samples in Rieman-
nian geometry because it does not fully capture the data geometric
feature and thus it is not a proper measure of similarity.

To capture the intrinsic geometric feature, we generalize
problem (3) by (a) restricting the centroid on the manifold1; and
(b) using geodesic distance as a measurement between two points.
Combining these two we extend the classic centroid in Euclidean
geometry to the manifold centroid in Riemannian geometry by
solving the following optimization problem:

ck ¼ arg min
xj ;jACk

1
2
∑

iACk
dgðxj; xiÞ; k¼ 1…K ð4Þ

where dgðxi; xjÞ is the geodesic distance between two samples xi
and xj. However, in clustering settings, the exact geodesic distance
between two samples xi and xj usually cannot be obtained directly,
because we have no prior information about the underlying

1 To restrict centroid on manifold, it is also possible to adopt other method to
choose the class centroid, such as the medium point. But our optimization method
has at least two benefits: first, the formulation is straightway to classic k-means
practitioners and easy to be understood; second, it is of computational efficiency, as
will be demonstrated.
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