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a b s t r a c t

The nearest neighbor (NN) classification is a classical and yet effective technique in machine learning
and data mining communities. However, its performance depends crucially on the distance function
used to compute distance between samples. In this paper, we first define the concept of sample's
neighborhood and present two related criteria according to neighborhood influence. Then, the influence
of sample's neighborhood is comprehensively considered when computing the distances between the
query and training samples. Finally, we propose an improved nearest neighbor classification algorithm
via fusing neighborhood information. The proposed method can precisely characterize the distance
among samples as well as enhance the predictive power of classifier to some extent. The experimental
results show that the proposed algorithm basically outperforms classical nearest neighbor classifier and
some other state-of-the-art classification methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The classical k-nearest neighbor (k NN) classification algorithm
[11] has gained increasing awareness as one of the 10 most
important data mining algorithms developed in the 20th century
[30]. It is successfully used for both classification problems and
function approximation [14,18]. The classification accuracy of k NN
algorithm significantly depends on the way that distances are
computed. Distance functions are used to measure the similarity
between the query and training samples for identifying the first k
nearest neighbors of the query sample.

With increasing awareness on nearest neighbor classification
learning in the literature [3,6,8,15,21,33], many distance functions
have been proposed to improve the performance of nearest
neighbor classifier, which can be further divided into global and
local distance metric learning. For the global distance metric learn-
ing, many distance metrics are proposed to process heterogeneous
feature sets, typical examples of this kind include Heterogeneous
Euclidean-Overlap Metric (HEOM) function, Value Difference Metric
(VDM), Heterogeneous Value Difference Metric (HVDM) and Inter-
polated Value Difference Metric (IVDM) [27,29]. In addition, the
others are estimated with weighted similarity between samples. Hu
et al. [12] proposed an approach to learn sample weights for
enlarging margin by using a gradient descent algorithm to minimize
margin based classification loss. Goldberger et al. [9] proposed a

method via a stochastic variant of the leave-one-out 1-NN score on
the training data to learn a Mahalanobis distance measure. Wang
et al. [28] developed an extremely simple adaptive distance measure
that assigns different weights to each sample. For the local distance
metric learning, many methods adopt locally adaptive distances,
rather than the Euclidean distance in the traditional k NN, to tackle
the global optimality problem. Typical examples of this kind include
the adaptive distance in ADAMENN, the Mahanalobis distance in
LMNN, the weight adjusted metric in WAk NN, the discriminant
adaptive metric in DANN and the informative metric in Ik NN
[20,25,26]. These local algorithms only consider neighboring pair-
wise constraints and avoid adopting those conflicting constraints.

All aforementioned methods are all trying to learn an approx-
imate single metric on all data samples. The drawbacks of learning
a single metric include (1) a single metric is likely inappropriate
for all training samples with different neighborhood information;
(2) a single local metric is sensitive to noisy samples; and (3) a
single global metric cannot directly deal with the multimodal
distribution problem. Therefore, it is reasonable to learn distance
metric via incorporating multiple metrics for the query sample.

In fact, neighborhoods and neighborhood relations are a class
of important concepts in topology. Lin [16] pointed out that
neighborhood spaces are more general topological spaces than
equivalence spaces. It is a powerful tool to data mining, pattern
classification and reasoning with uncertainty [5,9,13,20,31]. In this
paper, we will briefly review some notations of distance metrics
and k NN algorithm. And then we will propose a method to
improve the nearest neighbor classifier by involving sample's
neighborhood information. This approach computes the distance
between samples via considering not only the individual distance
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between samples but also the neighborhood information of each
sample. Furthermore, we obtain the first k nearest neighbors of a
query sample by fusing the above two distances. The proposed
method can more precisely characterize the distance between
samples as well as enhancing the predictive power of the pro-
posed classifier to some extent. Finally, some experimental ana-
lyses are extensively conducted on UCI datasets.

The rest of this paper is organized as follows. Section 2
introduces the basic concept of neighborhood and k NN algorithm.
In Section 3, we propose our metric to calculate the nearest
neighbors of a query sample, and design our related algorithm.
Numerical experiments are provided in Section 4. Finally, conclu-
sions are given in Section 5.

2. Related work

k NN is one of the effective and famous algorithms for function
approximation and data classification [30], many methods have
been proposed to improve the predictive power of k NN classifiers.
In general, the performance of k NN classifiers depends on three
factors: the sample size, the selection of distance metric and the
value of k. Notably, the sample size is a restrictive factor for k NN
classifiers. As we know, if the available samples are of high-
volume, k NN classifiers require computing all the distances
between the query sample and the training sample, and it is time
and memory consuming. Therefore, many algorithms are devel-
oped to reduce the size of dataset, such as condensed nearest
neighbor classifier [1], orthogonal search tree nearest neighbor
classifier [19], and outlier elimination based nearest neighbor
classifier [24]. Appropriate measures of distance very strongly
affect the accuracy of k NN classifiers. Therefore, many distance
functions, such as HEOM, VDM, IVDM and HVDM, are developed to
improve the predictive power of k NN classifiers. However, it is
considered as a challenging problem to define an accurate distance
measure for a given k NN classification task. Besides the above two
factors, the final factor which should be taken of is the value of
k (the number of nearest neighbors), on the basis of which
category of the query sample is determined. We could set the
value of k as a predefined value or select it automatically. For
example, Hu et al. [12] introduced a neighborhood rough set
model as a uniform framework to understand and implement
neighborhood classifiers. Bhattacharya et al. [4] used an affinity
function for distance measure on the basis of k¼

ffiffiffiffi
N

p
, where N is

the number of data used for training purpose. Guo et al. [10]
constructed a k NN model which replaces the data to serve as the
basis of classification, and the value of k is determined in terms of
classification accuracy.

3. Preliminaries

In this section, we will briefly review some kinds of distance
metrics and the classical k NN learning algorithm.

3.1. Distance metric

A distance metric is a distance function on a set of points,
mapping pairs of points into the non-negative real number.
Generally, there are three metric functions widely used.
Considering two samples x and y in an N-dimensional space
A¼ fa1; a2;…; aNg, f ðx; aiÞ is the value of x in the ith feature ai,
then a general metric, named the Minkowsky distance, is defined
as

Δpðx; yÞ ¼ ∑
N

i ¼ 1
jf ðx; aiÞ� f ðy; aiÞjp

 !1=p

; ð1Þ

where (1) it is called Manhattan distance Δ1, if p¼1; (2) Euclidean
distance Δ2, if p¼2; and (3) Chebychev distance Δ1, if p¼1.
A detailed survey about distance functions can be seen in [27,29].

In order to deal with heterogeneous features, there are a
number of distance functions for mixed numerical and nominal
data [27,29], such as Heterogeneous Euclidean-Overlap Metric
(HEOM) function, Value Difference Metric (VDM), Heterogeneous
Value Difference Metric (HVDM) and Interpolated Value Difference
Metric (IVDM). HEOM is defined as

HEOMðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i ¼ 1
wai � d2ai ðxai ; yai Þ

s
; ð2Þ

where N is the number of features, wai is the weight of feature ai,
dai ðx; yÞ is the distance between samples x and y with respect to
feature ai, defined as

dai ðx; yÞ ¼
1 if the feature value of x or y is unknown;
overlapai ðx; yÞ if ai is a nominal feature;
rn_diff ai ðx; yÞ if ai is a numerical feature;

8><
>:

where overlapai ðx; yÞ ¼ 0, if x¼y, otherwise overlapai ðx; yÞ ¼ 1, and
rn_diff ai ðx; yÞ ¼ jx�yj=ðmaxai �minai Þ.

Likewise, a simplified version (without the weighting schemes)
of the VDM is defined as

VDMðx; yÞ ¼ ∑
N

i ¼ 1
dai ðxai ; yai Þ: ð3Þ

For 8aiAA, dai ðxai ; yai Þ is defined as

dai ðxai ; yai Þ ¼ ðPðxai Þ�Pðyai ÞÞ2; ð4Þ
where Pðxai Þ is the probability of object x on feature ai and Pðyai Þ is
the probability of object y on feature ai.

3.2. k NN

k NN is one of the famous algorithms for function approxima-
tion and multivariate data classification [11,30]. Given a dataset D
consisting of n pairs of sample and label, i.e., D¼ fðx1; c1Þ;
ðx2; c2Þ;…; ðxn; cnÞg. The classification task is to determine the
mapping function f, on which the class labels of unclassified
samples can be predicted precisely. The nearest neighbor (1-NN)
rule, first proposed by Fix and Hodges, is one of the simple and yet
effective pattern classification algorithms [11].

Let Nk(x) be a set of k nearest neighbors of x, the label c of x is
determined by its k nearest neighbors with a majority of voting
strategies, that is

c¼ argmax
ci

∑
ci AC

∑
xj ANkðxÞ

Iðcj ¼ ciÞ; ð5Þ

where cj is the class label of xj and Ið�Þ is an indicate function. If cj is
the same as ci, Iðcj ¼ ciÞ ¼ 1; otherwise, Iðcj ¼ ciÞ ¼ 0.

The performance of k NN classification heavily depends on the
way that distances are computed, and its decision boundary is
very sharp and it is sensitive to noise. To alleviate these problems,
many effective solutions are to extend the nearest neighbor to k
nearest neighbors (k NNs) [4,17,32].

4. Fusing neighborhood information to the nearest neighbor
classifier

4.1. Neighborhood and its influence

In essence, the k nearest neighbor classification algorithm
identifies the category of an unknown sample by computing the
distance among samples, and not including sample's neighbor-
hood information. Fig. 1 shows an example of sample distance in
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