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a b s t r a c t

Objective: Automated pattern recognition systems have been used for accurate identification of neuro-
logical conditions as well as the evaluation of the treatment outcomes. This study aims to determine
the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern
recognition techniques.
Methods: Clinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), pro-
gressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects
(N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite� sensor carpet
were obtained from each subject. Subjects were randomly divided into two groups (training cases and
validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), arti-
ficial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were
calculated.
Results: ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by
NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy
cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear
palsy cases (76.7% and 40.0%).
Conclusions: Automated pattern recognition systems are able to identify pathological gait patterns and
establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns
of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to
KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders
of gait.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Gait disturbances are a common feature in patients with neuro-
logical disorders and have an immense impact on the quality of
life. Impairment of gait may lead to a decrement in mobility, social
independence, and is an important risk factor for falls (Stolze et al.,
2004; Sudarsky, 2001). In internal audit suggested that out of 3503
patients seen at the German Center for Vertigo and Balance
Disorders (DSGZ) outpatient clinic, a specialized clinic for vertigo
and balance disorders, 46% of patients had a chronic disorder with
daily symptoms of postural and gait imbalance.

Conventional gait analysis records temporal and spatial charac-
teristics of the gait cycle during normal walking. When complex gait
conditions are included in the protocol, e.g. by adding walking con-
ditions with motor or cognitive dual tasks, or walking at different
velocities, results can be used to determine an individual’s fall risk,
quantify disability and allows a prognosis of the course (Verghese
et al., 2009, 2010). While conventional gait analysis may provide a
quick overview of gait performance, it often fails to distinguish
patients with different pathologies. The reasons have been the huge
amounts of generated data, which are difficult to interpret, as well
as the absence of specific analysis criteria for pathological gait pat-
terns (Thompson, 2007; Sudarsky, 2001). Increased availability of
gait mats and treadmills further demands the development and
validation of new analytical and classificatory approaches. In view

http://dx.doi.org/10.1016/j.jelekin.2015.01.004
1050-6411/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +49 89 70950; fax: +49 89 70959971.
E-mail address: cauchypradhan@gmail.com (C. Pradhan).

Journal of Electromyography and Kinesiology 25 (2015) 413–422

Contents lists available at ScienceDirect

Journal of Electromyography and Kinesiology

journal homepage: www.elsevier .com/locate / je lek in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jelekin.2015.01.004&domain=pdf
http://dx.doi.org/10.1016/j.jelekin.2015.01.004
mailto:cauchypradhan@gmail.com
http://dx.doi.org/10.1016/j.jelekin.2015.01.004
http://www.sciencedirect.com/science/journal/10506411
http://www.elsevier.com/locate/jelekin


of shared commonalities as well as high dimensionality of gait data,
researchers have attempted to use automated pattern recognition
systems to classify gait. The automated systems not only provide
a class label useful for diagnostic purposes, but also enable clini-
cians to identify and understand important gait variables unique
to individual clinical conditions (Chau, 2001). While current pattern
recognition procedures cannot replace clinical acumen, it may help
strengthen diagnosis in unclear cases as well as screen large
databases for research purposes. This certainty can be further
improved as the classifiers can accommodate a wide variety of addi-
tional quantitative and qualitative clinical and non-clinical data.

The use of artificial neural networks (ANN) and other pattern
recognition techniques in medicine has grown enormously in the
last decade (Chau, 2001). In the field of posture research they have
been used for prediction, diagnosis and prognosis (Hahn and Chou,
2005; Krafczyk et al., 2006; Brandt et al., 2012). ANNs have also
successfully been used for prediction in orthopedic problems
affecting gait (Barton and Lees, 1997; Holzreiter and Kohle, 1993;
Lafuente et al., 1997). Support vector machines (SVMs), k-nearest
neighbor classifiers (KNN) and naive-bayes classifier (NB) are other
frequently used methods for gait classification (Sudha and Bhavani,
2012; Lu and Zhang, 2007; Wang et al., 2009; Kamruzzaman and
Begg, 2006; Manap et al., 2012). More recent studies have applied
Hidden Markov Models, SVMs and ANNs in discriminating dynam-
ic plantar pressure, electro-myography and acceleration profiles
often in combination with data reduction procedures such as prin-
cipal component analysis for feature extraction (Wang et al., 2012;
Aung et al., 2013; Klucken et al., 2013; Miller et al., 2013; Tang and
Sazonov, 2014). Data compression techniques such as PCA and
wavelet transform are especially important in the analysis of high
dimensional human gait video datasets (Xu et al., 2012).

Until now, gait pattern recognition has been mostly used on
kinematic gait data sets on limited number of groups (Barton and
Lees, 1997; Lafuente et al., 1997; Holzreiter and Kohle, 1993).
However, acquisition of kinematic data is often time and resource
consuming, resulting in its low clinical applicability. The objective
of this paper was to validate the possibility of using automated
pattern recognition procedures on routine clinical spatio-temporal
gait data, as a tool to assist clinical diagnosis. Our study for the first
time attempts to use and compare automated pattern classification
on five clinical groups utilizing temporo-spatial gait data acquired
using a pressure carpet which is both easy and quick to use in clin-
ical settings. Our goal was to determine the typical patterns of
pathological gait in phobic postural vertigo, cerebellar ataxia, pro-
gressive supranuclear palsy and peripheral bilateral vestibulopathy
when compared to normal subjects. Owing to the success in classi-
fying postural data we decided to construct the neural network
based on a previous study by our lab (Krafczyk et al., 2006;
Brandt et al., 2012).

2. Methods

2.1. Recruitment of the participants

Patients were recruited from the German Center for Vertigo and
Balance Disorders (DSGZ) outpatient clinic. We identified clinically
clear cases for the following pathologies:

1. Cerebellar ataxia: the diagnosis was based on cerebellar symp-
toms in clinical neurological examination and atrophy of the
vermis or hemispheric regions of the cerebellum, identified
using MRI or CT scan. Symptoms were present for the duration
of at least 3 months. Patients with neuro-otological signs and
symptoms (spontaneous nystagmus, pathological head impulse
test, caloric vestibular responses), and polyneuropathy were
excluded.

2. Phobic postural vertigo: the clinical diagnosis was based on the
criteria of Brandt (1996). Additional inclusion criteria were
symptom duration of at least 3 months and the presentation
of symptoms on the day of testing. Neuro-ophthalmologic
examination and caloric responses in these patients were nor-
mal and they had no signs of polyneuropathy. Patients had been
off psychotropic medication for more than 1 month, and had no
history of alcohol abuse.

3. Bilateral vestibulopathy: patients presenting with instability of
gait for at least 3 months and complete severe deficit on clinical
testing (bilateral pathologic head-impulse test (Halmagyi and
Curthoys, 1988) and absent or maximal caloric responses <5
degrees slow-phase velocity during irrigation with water 30/
44 �C), and no signs of polyneuropathy.

4. Progressive supranuclear palsy: patients presenting with
bradykinesia and rigidity for at least 3 months duration.
Patients also had vertical ocular motor dysfunction (saccadic
pursuit or gaze palsy). Patients with morphological pathologies
of the midbrain or basal ganglia on MRI scans were excluded.

5. Healthy subjects: they were recruited among healthy relatives
of patients and staff and through advertisements in newspa-
pers. All subjects were clinically examined and did not show
any vestibular, sensorimotor or neurological abnormalities
which could affect gait.

All participants gave their written informed consent prior to the
gait measurements. The study was approved by the local ethics
committee and performed in accordance to the Statement of Hel-
sinki and its later revisions.

2.2. Gait analysis procedures

Gait analysis was performed using a 6.7-m long pressure-sensi-
tive carpet (GAITRite�, CIR System, Havertown; USA) with a sam-
pling rate of 120 Hz, spatial resolution of ±1.27 cm and temporal
resolution of ±1 samples. The carpet system provides the single
step values, mean values, and standard deviations for different gait
parameters. Gait parameters were obtained during preferred walk-
ing speed, slow speed and maximally fast speed, as well as during
walking with eyes closed at preferred speed, walking with head
extension and walking while performing three different dual tasks
(verbal fluency, serial subtraction of 7 and carrying a tray). For the
slow walking condition, subjects were asked to walk along the car-
pet naturally, at their slowest possible speed. Trials with pauses, or
prolonged stance phases were excluded and repeated. Dual task
verbal fluency gait included a nomination task (i.e. names of ani-
mals starting with ‘B’) while walking along the carpet at normal
speed. Dual task subtraction was an arithmetic task (i.e. serial sub-
traction of 7 from 105) while walking along the carpet at normal
speed. Task prioritization was achieved by asking the subjects to
focus on the non-gait task.

2.3. Data analysis

17 discreet gait variables were analyzed from each subject for
each gait modality leading to a total of 136 discreet measurements
for each subject. Variables measured included: functional ambula-
tory profile (FAP) (17), walking velocity (m/s), normalized walking
velocity (m/s), step frequency (Hz), support base (m), stride length
(m), stride time (s), double support time (s), double support per-
centage (%), swing and stance percentages (%), coefficient of varia-
tion (CV) of stride length, stride time, support base and double
support time (standard deviation divided by the mean as a per-
centage; %), step length and step time differences (difference
between left and right foot). The FAP score is the linear relationship
of step length to leg length ratio to step time when the velocity is
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