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ABSTRACT

A new class of activation functions is proposed as the sum of shifted log-sigmoid activation functions.
This has the effect of making the derivative of the activation function with respect to the net inputs, be
bi-modal. That is, the derivative of the activation functions has two maxima of equal values for nonzero
values of the parameter, that parametrises the proposed class of activation functions. On a set of ten
function approximation tasks, the usage of the proposed activation function demonstrates that there
exists network(s), using the proposed activation, and are able to achieve lower generalisation error, in
equal epochs of training using the resilient backpropagation algorithm. On a set of four benchmark
problems taken from UCI machine learning repository, for which the networks are trained using the
resilient backpropagation algorithm, the scaled conjugate algorithm, the Levenberg-Marquardt algo-
rithm and the quasi-Newton BFGS algorithm, we observe that the usage of the proposed algorithms
leads to better generalisation results, similar to the results for the ten function approximation tasks
wherein the networks were trained using the resilient backpropagation algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Artificial Neural Networks (ANNs) have been demonstrated to
be an efficient technique for the solution of complex tasks or
learning problems. The set of all learning problems range over
and can be broadly be subdivided into four classes of common
problems [12]:

1. Classification

2. Regression

3. Density Estimation

4, Clustering/Vector Quantisation.

To a large extent, the success of the feedforward artificial
neural networks (FFANN) with sigmoidal hidden nodes, in solving
complex learning tasks, may be attributed to the possession of
the Universal Approximation Property (UAP) by these networks.
These results imply that for an appropriate non-linearity at the
hidden layer of a three layer network,' the network with sufficient
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number of hidden nodes can approximate any continuous function
arbitrarily well [6,14,16,21,24,32]. A single hidden layer FFANN is
represented as (Fig. 1)

1. The inputs are to be taken in a finite interval [32], usually [0,1]
or [-11].

2. Fig. 1 shows the schematic of a single hidden layer network
with one output node.?

3. The input nodes transfer the input(s) without any processing.

4. The hidden layer net input (for the ith node) is given by:

7
ny= Z W,'ij-FH,'; ie{l,2,...., H} (@)
i=h

where 7 is the number of inputs, and # is the number of
hidden nodes.

5. The activation function ¢)(-) is a map ¢ : R —» R, where R is the
set of all real numbers. The activation function is used as the

(footnote continued)
hidden layer. Thus, a three layer network may also be known as a single hidden
layer network.

2 Though the network may have one or more layers, in between the input and
the output layer, we consider the single hidden layer network as the minimal
network to have the UAP.
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Fig. 1. The schematic diagram of a single hidden layer network.

hidden layer node non-linearity (to transform the net input to
the output of the node). The properties generally required to be
fulfilled by these activation functions are:

(a) The function must be bounded [6,14,16,21,24].

(b) The function should be continuous [6,14,16]. This together
with the condition of the differentiability is a condition
that is also required by the training algorithms based on
gradient, hessian and/or conjugate direction calculation
(s) or where the derivative of the activation function is
required for the calculation of the weight updates during
training. Though for the existence of the UAP, this require-
ment is not necessary [21,24].

(c) The function should be a sigmoid [6,14,16,21,24]. Or, the
limits for + oo for the function satisfy the following [9]:

XLirElOC(j)(x) =a (2)
lim ¢px) = (€)
with a < f.

(d) The output from the kth output node being:
H
Y= 'Zlakid)i(ni)‘FYk; ke{1,2,....0} “4)
1=

where O is the number of output nodes, and ¢; is the non-
linear map also known as the activation function or
squashing function at the ith hidden layer node.

(e) The condition of monotonicity of the activation function is
not a mandatory requirement for the existence of the UAP
[14,24].

The cardinality of the class of activation function(s), satisfying
these requirements, is infinite [7,15].

6. The number of nodes present is not specified by these UAP
results, the general assertion being that - if sufficient number
of hidden nodes, satisfying the above properties for the activa-
tion function exist, the network may approximate any contin-
uous function arbitrarily well. The currently best known
bounds for the achievable error for a network with N nodes
is the bound given in [3] as O(N~/2) or the result reported in
[29] as O(N’”“) (see also, [4,28,36,39,41]).3

Thus, the fundamental choices to be made while choosing the
architecture of a single hidden layer network are®:

3 In practice, it is observed that these bounds are very loose; that is,
convergence of training to achieve the desired (error) goal is obtained with
substantially lesser number of nodes as compared to the number of nodes
predicted by these bounds. In practice, the number of nodes, in the hidden layer
(s), is fixed by exploratory experiments wherein the number of nodes in the hidden
layer is varied. The smallest number of nodes, that gives a “tolerable” error is taken
as the size of the hidden layer(s).

4 It may be kept in view that the choice of the initial configuration of weights is
also a question to be answered before the training of any network is begun, for the

1. The choice of number of nodes in the hidden layer. This
problem is usually solved by running a set of experiments
where the number of nodes in the hidden layer is varied for a
few instances of the network, and if a network of a particular
size gives a satisfactory approximation, the size is fixed. That is,
the network size (or the size of the hidden layer) is fixed by
exploratory experiments.

2. The choice of the activation function. This choice is usually
made on the basis of the preference of the researcher. Though
some guidelines for the preference of anti-symmetric (or odd)
functions have been given [20,26]. The commonly utilised
activation functions are:

(a) The logistic or the log-sigmoid function, defined as

o(X) = Tre—=x )
The derivative of this function is
doy(x ,
10— 61600 = 01001~ 01(9) ®)
(b) The hyperbolic tangent function, defined as
eX—e X
op(X) = e re—x
=2012x)—1 7
The derivative of this function is
dop(x ,
90 _ o100 = (1) ®)

For a summary of universal approximation results for FFANNs
with sigmoidal hidden nodes and further references see
[10,32,35]. For a survey of activation functions see [15].

These usually utilised activation functions derivatives are uni-
modal® in nature (see Fig. 2). The uni-modality of the derivative
of the activation function is not a requirement for the posses-
sion of the UAP by the FFANN. In this paper we explore the
feasibility of utilising a bi-modal derivative activation function
that is sigmoidal, monotonically non-decreasing, continuous
and differentiable.

The paper is organised as follows: in Section 2 we describe the
properties of the activation function used. Section 3 describes the
experimental design. Section 4 presents the results while conclu-
sions are presented in Section 5.

2. Bimodal activation function

We define a sigmoidal function, in this paper, as:

Definition 1. A sigmoidal function &(-) is a map ¢ : R—R, where
R is the set of all real numbers, having the following limits for the
argument to the function (x) tending to + oo:

Jim o(x)=p )]
im o =a: a<p (10)

(footnote continued)
discussion and in context to this paper, it is relevant only in the fact that there must
be an initial set of weights as per the requirement of the training algorithm.

5 The term uni-modal here is used with the meaning that a uni-modal function
has only one local maxima. Thus, a bi-modal function has two local maxima.
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