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ABSTRACT

Max-min distance analysis (MMDA) for dimensionality reduction has been presented to guarantee class
separation. However, class centers may be nonuniformly distributed and thus optimal classification
accuracy may not be obtained. In this paper, we first give a novel method based on MMDA, called
fractional-step max-min distance analysis (FMMDA), which relaxes max-min pairwise distances in
fractional steps. The method can make a relatively uniform distribution of class centers and approxi-
mately maintain class separation. Then we present a more efficient method, called regularized max-min
distance analysis (RMMDA), which achieves the same effect as FMMDA by integrating the Fisher
criterion into MMDA. Moreover, we present the speedup and kernel versions of the methods to
accelerate an optimization procedure and deal with the data distribution problem, respectively. Finally,
we analyze the computational complexities of our methods. Empirical studies demonstrate that our
methods can outperform or be comparable to some state-of-the-art discriminant analysis methods in
terms of classification accuracy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction (DR) is a fundamental issue in many
pattern recognition and machine learning applications. In unsu-
pervised dimensionality reduction, the essential goal is to preserve
significant properties of data in a low-dimensional subspace [1-7].
In supervised dimensionality reduction, class labels are available
to influence the choice of a subspace [8-15]. Moreover, in semi-
supervised dimensionality reduction, both labeled and unlabeled
data are used to determine a desirable subspace [16-19].

As a classical technique for dimensionality reduction, Fisher's
linear discriminant analysis (FLDA) [8,9] is fast and easy as an
optimal subspace can be determined with simple matrix computa-
tions. However, the between-class scatter matrix implicitly limits
the maximum dimensionality of the subspace since the rank of the
matrix is deficient. Namely, the dimensionality of the subspace is
smaller than or equal to c—1, wherein c is the class number. In
general, a larger dimensional subspace may further contribute to
classification accuracy. As expected, some approaches can increase
the dimensionality of the subspace. Heteroscedastic LDA (HLDA)
[20], wherein LDA is linear discriminant analysis, was presented to
deal with heteroscedastic data by simultaneously considering differ-
ences in class means and covariances. For HLDA, the rank of the
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generalized between-class scatter matrix is in general larger than
c—1, thus the algorithm can obtain a larger dimensional subspace.
Subclass discriminant analysis (SDA) [21] was proposed to address
the problem that the data distribution is unknown. Since in general
the rank of the between-subclass scatter matrix increases, SDA can
get a subspace whose dimensionality is larger than c—1.

In addition to the limitation of the dimensionality, FLDA suffers
from another related problem that close classes tend to merge in
the subspace. It can be explained as follows: The goal of FLDA is to
maximize the sum of squared distances between class means
when the Fisher criterion is decomposed into pairwise Fisher
criteria under certain assumption [22]. In the eigenvalue decom-
position (for FLDA the solution is given by eigenvalue decomposi-
tion), inappropriate weights are implicitly given to different class
pairs. In other words, far apart class pairs are overemphasized and
close class pairs are ignored to a great degree. Hence, FLDA does
not achieve optimal classification accuracy. Lotlikar and Kothari
[23] developed fractional-step LDA (F-LDA) by iteratively applying
LDA, in order to improve classification performance. In each step,
close class pairs are indirectly endowed with large weights by
gradually shortening distances in certain direction between data
points. Loog et al. [22] proposed the approximate pairwise
accuracy criterion (aPAC) to improve the classification perfor-
mance of FLDA. The criterion is based on pairwise Fisher criteria
and each two-class Fisher criterion is emphasized by a weighting
function. Although the function is derived by approximating the
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two-class Bayes accuracy, the various approximations may dete-
riorate classification accuracy. Tao et al. [24] gave the geometric
mean-based subspace selection (GMSS) to deal with the class
separation problem. The algorithm is motivated by the observation
that FLDA can be viewed as maximization of average Kullback-
Leibler divergences between classes under certain assumption.
Although GMSS adaptively emphasizes effects of divergences of
close class pairs, it still cannot guarantee the separation of the
class pairs.

Moreover, Sugiyama [13] developed local Fisher discriminant
analysis (LFDA) to deal with multimodal data, which integrates
local structure information into the reformulation of FLDA. The
method can not only better preserve local structure in a subspace,
but can also increase separability between different classes.
Hamsici et al. [25] presented a Bayes optimal method, Bayes
optimality in linear discriminant analysis (BLDA), to improve
classification performance. However, it complies with the Bayes
criterion only for a one-dimensional subspace, and the greedy
approach is adopted for other dimensions, thus resulting in large
computational load.

Recently, Bian and Tao [26] defined a novel discriminative
dimensionality reduction criterion, max-min distance analysis
(MMDA). The criterion can guarantee separation of class pairs
since the minimum pairwise distance is maximized in a subspace
under the homoscedastic Gaussian assumption. However, it may
not guarantee a uniform distribution of class centers and thus
many class pairs may not be emphasized duly. For MMDA, the
max-min pairwise distance absolutely determines the distribution
of class centers. However, the criterion is clearly different from the
uniform distribution. Thus, according to MMDA, class centers may
be nonuniformly distributed and many relatively close class pairs
may occur. It is to say that despite excellent separability, the class
pairs are not properly emphasized. Therefore, MMDA may not
provide optimal classification accuracy.

In this paper, we first present fractional-step max-min distance
analysis (FMMDA) to obtain high classification accuracy. To this
end, we relax max-min pairwise distances in fractional steps on
the basis of MMDA. The goal of relaxing the distances is to get a
relatively uniform distribution of class centers. Moreover, the
fractional-step strategy aims to maintain excellent separability
between class centers and the same effect can be obtained with a
small relaxation in each step. Thus class centers are uniformly
distributed to a large extent and separation of class pairs is
approximately preserved. As a result, almost all class pairs are
duly emphasized.

Although FMMDA achieves better classification performance,
it performs an optimization in fractional steps. Thus, the computa-
tional cost may be high. We then give an efficient method,
regularized max-min distance analysis (RMMDA), to overcome
the drawback, and the method uses the Fisher criterion to
regularize MMDA. We are primarily motivated by the observation
that close class pairs under the max-min criterion may become
more separable under the Fisher criterion. By adequate regulariza-
tion, class centers can be distributed fairly uniformly and separa-
tion of class pairs is approximately preserved. As a result, RMMDA
achieves high classification performance without an iterative
procedure.

In addition, we give the speedup versions of FMMDA and
RMMDA. The versions can greatly accelerate an optimization
procedure in case the dimensionality is much larger than the
sample size or the class number. Meanwhile, we give the kernel
versions of the two methods to solve the problem that the data
does not meet the homoscedastic Gaussian assumption. We eval-
uate the proposed methods on five types of data sets and experi-
mental results show that the methods can perform better than or
be comparable to some top-level discriminant analysis methods.

This paper is organized as follows. In Section 2, we briefly
review FLDA and MMDA. In Section 3, we present our FMMDA
method. The RMMDA method is introduced in Section 4. Then the
speedup versions of our methods are presented in Section 5. We
give the kernel versions of the methods in Section 6. Section 7
presents the computational complexity analysis. The experiments
are given in Section 8. Finally, we give the conclusions and the
discussion in Section 9.

2. Related work

As mentioned in Section 1, our methods are based on MMDA. On
the other hand, RMMDA is a combination of FLDA and MMDA.
Therefore, we provide a brief description of FLDA and MMDA below.

2.1. Fisher's linear discriminant analysis (FLDA)

It is well known that Fisher's linear discriminant analysis (FLDA)
is a popular technique for supervised dimensionality reduction.
Here, we first briefly review its definition and then reformulate it
to better validate the proposed RMMDA method later.

Let there be given a data set including N samples X = [x;]"_ ,,
where x; € R™ is the ith labeled training sample in an m-dimen-
sional space. The samples are from c classes and for class wy,
k=1,2,...,c, there are N, samples in X. Let x, denote the mean
of class wy and let p, be the prior probability of class w,. The
between-class scatter matrix S, and the within-class scatter
matrix S,, are given by
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where x is the mean of all the samples, i.e., u=(1/N)¥N_,x;, and
xf‘ is the Ith sample from class w,. Moreover, the mean . is
estimated as 4 = (1/N) X" ,xk.

According to the definition of FLDA [9], it seeks a projection
matrix W e R™¢ which optimizes the following trace ratio pro-

blem:
tr(W'S,W)
maxT—.
W tr(W's,, W)

Problem (1) does not have a close-form solution and it can be
approximately simplified into the corresponding ratio trace pro-
blem:

max tr(W'S,, W)~ (WTS,W)). 2)

M

Problem (2) can be solved by the generalized eigenvalue decom-
position method [27].
The between-class scatter matrix S, can be reformulated as
c—1
!

C
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Accordingly, problem (2) can be transformed into the following
form:
oL T 1T
max > Py tr(W S, W)~ (W' S W)), 3)
Wk =tl=k+1

where Sy = (up —p)(ux—p)’. The form shows that the Fisher
criterion is equivalent to a combination of two-class Fisher criteria
[22].

Suppose that the given data set is obtained by sampling from c
conditional Gaussian distributions with an equal covariance and
different means. The distributions are denoted by p(X | wy)=
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