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a b s t r a c t

Ensembles have been shown to provide better generalization performance than single models. However,
the creation, selection and combination of individual predictors is critical to the success of an ensemble,
as each individual model needs to be both accurate and diverse. In this paper we present a hybrid multi-
objective evolutionary algorithm that trains and optimizes the structure of recurrent neural networks for
time series prediction. We then present methods of selecting individual prediction models from the
Pareto set of solutions. The first method selects all individuals below a threshold in the Pareto front and
the second one is based on the training error. Individuals near the knee point of the Pareto front are also
selected and the final method selects individuals based on the diversity of the individual predictors.
Results on two time series data sets, Mackey-Glass and Sunspot, show that the training algorithm is
competitive with other algorithms and that the final two selection methods are better than selecting all
individuals below a given threshold or based on the training error.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Time series data can be regarded as any information that varies
with time and time series forecasting can be described as project-
ing this time series data into the future [1]. Understanding the
behavior of a dynamic system and using this information to
predict its future behavior can be very useful and it has been
applied to the prediction of electricity demand [2], solar data [3],
finance forecasting [4,5] and hydrological forecasting [6].

To confidently predict time series data the dynamics of the
system needs to be accurately modeled. Recurrent neural net-
works (RNNs) are considered to be suitable for time series
prediction as they have both feed-back and feed-forward connec-
tions. A form of memory is incorporated into the networks, with
the states of the neurons from previous iteration steps being
stored and used to influence the prediction of data at future
iterations. An ensemble of predictors can be used to produce a
confident prediction and involves combining many different
models to give the final prediction. An ensemble can include
information that is not contained in a single model [7] and each
member can produce different errors. Ensembles have been shown
to provide better generalization performance than single models
and the result is a more confident final prediction [8]. Ensembles
of RNNs should therefore be well suited for time series prediction.

Evolutionary algorithms (EAs) use a population of solutions to
solve a problem, which makes them ideal for creating potential
individual predictors in an ensemble, as they result in a population
of solutions. EAs have been used to train neural networks [9–12],
however, some members in the final population may not be
suitable. Therefore, selecting the right models in the population
to ensemble is very important.

There has not been much discussion in the literature on how to
select ensemble members from the Pareto set of solutions. For
example in [13], two slightly different methods for generating
ensemble members were reported. The first variant splits training
data into two subsets, and the training errors on the two subsets
are used as two objectives. In the second variant, random noise is
added to the training data set to form the second objective.
However, all Pareto-optimal solutions are used to construct
ensembles and no selection strategy has been discussed. There-
fore, this paper investigates different selection methods for time
series prediction tasks. A hybrid multi-objective evolutionary
algorithm (H-MOEA) is used to train RNNs and determine their
optimal structure and four selection methods are investigated to
select individual models from a filtered population of solutions.
Firstly, all filtered members are selected. Then members with a
low training accuracy and members located near the knee point of
the Pareto front are considered. Finally, members with a large
degree of diversity in the filtered population are selected. The
normalized performance gain (NPG) [14] and the ambiguity term
of the error-ambiguity decomposition [15] are used to determine
the knee point and the diversity terms, respectively.
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Two time series data sets are used to test the training algorithm
and selection methods. The Mackey-Glass is a simulated chaotic time
series, while the Sunspot is a real-world time series. The prediction
performance is compared with a number of other methods in the
literature that have used similar parameter settings.

The rest of the paper is organized as follows. Background of
recurrent neural networks and their training methods are pre-
sented in Section 2. Information on the specific training and
selection algorithms are presented in Section 3. Section 4 presents
the experiments, results and discussions. Section 5 concludes the
paper and provides details of future work.

2. RNNs for time series prediction

2.1. Time series data and dynamic reconstruction

Univariate time series data is any data set with only one variable.
Dynamic reconstruction is concerned with establishing a model that
“captures the underlying dynamics” of a system that uses univariate
data and can be used to determine future values [16]. The recon-
struction vector, yRðnÞ ¼ ½yðnÞ; yðn�τÞ; ::; yðn�ðD�1ÞτÞ�T , is defined in
terms of the time series observable output y(n) and its delayed
versions [16]. τ is the normalized embedding delay. D corresponds to
the minimum number of data points needed for dynamic reconstruc-
tion and is known as the embedding dimension.

Taken's Theorem states that DZ2dþ1, where d is the dimension
of the state space of the system [16]. The value of D may not be
known and although increasing D can improve prediction, it could
also introduce noise or imperfections into the system. It is therefore
desirable to keep D to a minimum. Various values for the embedding
delay and dimension have been used for time series prediction;
D¼3/τ¼2 [17], D¼4/τ¼6 [18] and D¼3/τ¼7 [19] and values have
also been determined using an evolutionary algorithm [20]. However,
specific parameter values can be problem dependent.

Feed-forward neural networks [6,21], recurrent radial basis
functions [22] and fuzzy models [23] have all been used for time
series prediction and have used various embedding delay and
dimension values.

2.2. Recurrent neural networks

Neural networks are nonlinear models used to approximate
solutions to complex problems and can be used to model any
nonlinear function. They acquire knowledge of the system or
environment that they are embedded in through observations
and use them to train the network [16]. Recurrent neural networks
(RNNs) are dynamical systems that are specifically designed for
temporal problems, as they have both feed-back and feed-forward
connections.

More specifically, a form of memory is incorporated in RNNs,
with the states of the neurons from previous iteration steps being
stored and used to influence the prediction of future iterations.
RNNs have been shown to out perform feed-forward neural
networks on time series tasks [24] and have been empirically
shown to be successful on time series data sets [17–19,25].

The overall structure of a RNN consists of synaptic connections
between the input, hidden and output layers of neurons. Knowl-
edge is represented in a network by the values of these synaptic
connections. The states of the neurons are dependent on these free
parameters, the inputs to the neurons and the states of the
neurons at previous time steps [26]. A RNN can have copies of
any neuron in the network from the previous time-step and they
can be used to influence the prediction of data at future iterations.
The objective of learning is to train the network by adjusting the
connection weight values, over several training epochs, to reduce

the output error of the network. Training moves the error towards
a minimum point on the error surface, which has the free
parameters of the network as its coordinates [16].

Gradient descent (GD) [19,27], single-objective evolutionary algo-
rithms (SOEAs) [25,28] and multi-objective evolutionary algorithms
(MOEAs) [20,29,30] have been used to train RNNs. Hybrid approaches
to neural network training that combine global and local search
techniques have also been used [31–33]. Of these hybrid methods,
some have used Baldwinian [31] and others Lamarckian learning
[34]. The global search is used to find suitable starting weight values
and the local search to fine tune them to their optimal value. As well
as training the networks weight values, MOEAs can also optimize the
structure (number of connections) of the network [11,35].

2.3. Ensemble member generation and selection

When constructing an ensemble it is important that each
individual model is both accurate and diverse [36]. There is always
a trade-off between these two characteristics [37] and this is
summarized by the error-ambiguity decomposition presented by
Krogh and Vedelsby [15]. Eq. (1) summarizes this relationship,
showing that the generalization error of an ensemble (E) is based
on the weighted average of the individual generalization errors ðEÞ
and the weighted average of ambiguities ðAÞ:

E¼ E�A ð1Þ

By reducing each individual's generalization error and increas-
ing their ambiguity, the overall generalization error of the ensem-
ble will reduce. However, by increasing the ambiguity of an
individual predictor there is an increase in the individual's error.

Diverse ensemble members can be either implicitly or explicitly
created. Different data samples, network parameters and initialization
methods, as well as using different learning algorithms have all been
used to implicitly create diverse ensemble members [36,37]. To
explicitly create diverse neural network ensembles, the ADDEMUP
[12], DIVACE [10] and regularization [11] algorithms have all
been used.

The use of an MOEA to create diverse ensemble members is
very attractive, as the fitness functions can be specifically chosen
to optimize conflicting objectives, with the resultant Pareto-
optimal solutions providing a trade-off between these objectives
and a set of optimal solutions [38].

There may be one model in the Pareto set that is able to perform
better than an ensemble, however, there is no clear way of selecting
this individual model [37]. There may also be unsuitable/infeasible
solutions in the final Pareto set, so a subset may provide better
performance and it has been suggested that to ensemble many of the
individual members can be better than ensembling them all [39].
Therefore, an MOEA can be used as an indicator of which solutions to
use in the ensemble and MOEAs have been used to successfully
design neural networks for a variety of problems [7,14].

Ranking all the individual models, based on some criteria or
through the use of an optimization process, has been suggested as
possible methods of selection [36]. The method used to combine the
selected ensemble members is also very important and as stated in
[36], the variance as well as the bias of learning algorithms may be
reduced through an optimal combination.

The mean of a number of predictors [6,40] or the weighted
mean [4,6] of the final output has been used to combine the
individual predictors. The weighted median [41] and the weighted
sum [42] have also been used, among many others.

Section 3 provides information on the specific H-MOEA and
selection algorithms used in this work.
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