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a b s t r a c t

Neural coding and learning are important components in cognitive memory system, by processing the
sensory inputs and distinguishing different patterns to allow for higher level brain functions such as
memory storage and retrieval. Benefitting from biological relevance, this paper presents a spiking neural
network of leaky integrate-and-fire (LIF) neurons for pattern recognition. A biologically plausible
supervised synaptic learning rule is used so that neurons can efficiently make a decision. The whole
system contains encoding, learning and readout. Utilizing the temporal coding and learning, networks of
spiking neurons can effectively and efficiently perform various classification tasks. It can classify complex
patterns of activities stored in a vector, as well as the real-world stimuli. Our approach is also
benchmarked on the nonlinearly separable Iris dataset. The proposed approach achieves a good
generalization, with a classification accuracy of 99.63% for training and 92.55% for testing. In addition,
the trained networks demonstrate that the temporal coding is a viable means for fast neural information
processing.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The great computational power of biological systems has drawn
increasing attention from researchers. Although the detailed informa-
tion processing involved in memory is still unclear, observed biolo-
gical processes have inspired many computational models operating
at power efficiencies close to biological systems. Pattern recognition is
the ability to identify objects in the environment, and several
conventional methods are used to implement it, such as maximum
entropy classifier, naive Bayes classifier, decision trees, and support
vector machines. As is a necessary first step in all cognitive processes
including memory, it is better to consider pattern recognition from
brain-inspired models which could potentially provide great compu-
tational power.

To approach biological neural networks, the artificial neural
networks (ANNs) are developed as simplified approximations in
terms of structure and function. Since early neurons of the
McCulloch–Pitt neuron in 1940s and the perceptron in 1950s [1],
referred as the first generation neuron models, ANNs have been
evolving towards more neural-realistic models. Different from the
first generation neurons in which step-function threshold is used,
the second generation neurons use continuous activation

functions (like a sigmoid or radial basis function) as threshold
for output determination [2]. The first two generations are referred
as traditional neuron models. Studies on biological systems dis-
close that neurons communicate with each other through action
potentials (pulses or spikes). As the third generation neuron
model, spiking neurons raise the level of biological realism by
utilizing spikes. The spiking neurons dealing with precise timing
spikes improve the traditional neural models on both the aspects
of accuracy and computational power [3]. There are several kinds
of spiking neuron models such as the integrate-and-fire (IF) model
[4], the resonate-and-fire model [5], the Hodgkin–Huxley model
[6], and the Izhikevich model [7]. Since the IF model is simple and
computationally effective [8], it is the most widely used spiking
neuron model [9–15], despite other more biologically realistic
models.

Encoding is the first step in creating a memory, which con-
siders how information is represented in the brain. Although
results remains unclear, there are strong reasons to believe that
it is optimal using pulses to encode the information for transmis-
sion [16]. The inputs to a spiking neuron are discrete spike times.
Rate coding and temporal coding are two basic and widely studied
schemes of encoding information in these spikes. In the rate
coding the average firing rate within a time window is considered,
while for the temporal coding the precise timings of spikes are
considered [17]. Neurons, in the retina [18,19], the lateral
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geniculate nucleus (LGN) [20] and the visual cortex [21] as well as
in many other sensory systems, are observed to precisely respond
to stimuli on a millisecond timescale [22]. Temporal patterns can
carry more information than rate-based patterns [23–25]. A
simple example of the temporal encoding is spike latency coding.
The capability of encoding information in the timing of single
spikes to compute and learn realistic data is demonstrated in [26].
Since this coding utilizes only single spikes to transfer information,
it could potentially be beneficial for efficient pulse-stream very
large scale integration (VLSI) implementations.

Many algorithms for spiking neural networks (SNNs) have been
proposed. Based on arithmetic calculations, the SpikeProp [9,26]
was proposed for training SNNs, similar in concept to the back-
propagation (BP) algorithm developed for traditional neural net-
works [27]. Others use bio-inspired algorithms, such as spike
timing dependent plasticity (STDP) [28–31], the spike-driven
synaptic plasticity [13], and the tempotron rule [14]. Although
the arithmetic calculations can easily reveal why and how net-
works can be trained, the arithmetic-based rules are not a good
choice building networks with a biological performance. STDP is
found to be able to learn distinct patterns in an unsupervised way
[12], and it characterizes synaptic changes solely in terms of the
temporal contiguity of presynaptic spikes and postsynaptic poten-
tials or spikes. In the spike-driven synaptic plasticity [13], a rate
coding is used. The learning process is supervised and stochastic,
in which a teacher signal steers the output neuron to a desired
firing rate. Being different with spike-driven synaptic plasticity,
the tempotron learning rule [14] is efficient to learn spiking
patterns where information is embedded in precise timing spikes.

Although SNNs show promising capability in playing a similar
performance as living brains due to their more faithful similarity
to biological neural networks, the big challenge of dealing with
SNNs is reading data into and out of them, which requires proper
encoding and decoding methods [32]. Some existing SNNs for
pattern recognition (as in [13,33]) based on the rate coding.
Different from these SNNs, we focus more on the temporal coding
which could potentially carry the same information efficiently
using less number of spikes than the rate coding. This could largely
facilitate the computing speed.

In this paper, we build a bio-inspired model of SNNs containing
encoding, learning and readout. Neural coding and learning are the
main considerations in this paper, since they are important compo-
nents in cognitive memory system by processing the sensory inputs
and distinguishing different patterns to allow for higher level brain
functions such as memory storage and retrieval [34]. Inspired by the
local receptive fields of biological neurons, the encoding neuron
integrates information from its receptive field and represents the
encoded information through precise timing of spikes. The timing
scale of spikes is on a millisecond level which is consistent with
biological experimental observations. The readout part uses a simple
binary presentation as proposed in this paper to represent fired or
non-fired state of the output neuron. Through the encoding and
readout, SNNs can be applied to deal with real data well.

The main contribution of this paper lies in the approaches of
designing SNNs for pattern recognition. Pattern recognition helps
to identify and sort information for further processing in brain
systems. A new coming pattern is recognized upon paying atten-
tion and similarity to previously learned patterns which are
obtained through weight modification. Recognition memory is
formed and stored in synaptic strengths. Inspired by biology,
spiking neurons are employed for computation in this paper. This
paper is extended from our preliminary work [35] by adding more
comparative and analytic studies. The system contains encoding,
learning and readout part. We demonstrate that, utilizing the
temporal coding and learning, networks of spiking neurons can
effectively and efficiently perform various classification tasks. In

addition, the results also demonstrate that the temporal coding is
a viable means for fast neural information processing and learning
on real-world data.

The rest of this paper is organized as follows. Section 2 presents
the architecture of the spiking neural network. Section 3 describes
the temporal learning rule we used in our approaches. The
relationship between this rule and well-studied STDP is also
introduced. Section 4 shows the ability of the network to learn
different patterns of neural activities (discrete-valued vectors).
Section 5 shows the SNN for learning continuous input variables.
We use the well-known Iris dataset problem to benchmark our
approach against several existing methods. In Section 6, we
demonstrate the ability of our spiking network for learning real-
world stimuli (images). Finally, we end up with discussions in
Section 7, followed by conclusions in the last section.

2. The spiking neural network

In this section, we describe the whole system architecture of
spiking neurons for obtaining recognition memory. The system
composes 3 functional parts: the encoding part, the learning part
and the readout part (see Fig. 1). A stimulus consists of several
components. The components are partially connected to encoding
neurons to generate encoded spiking information. The encoding
neurons are fully connected to learning neurons.

Each part plays a different functional role in the system: the
encoding layer generates a set of specific activity patterns that
represent various attributes of external stimuli; the learning layer
tunes the neurons’ weights making sure that particular neurons
can respond to certain patterns correctly; the readout part extracts
information about the stimulus from a given neural response.
Through this architecture, the problem of getting data into and out
of the spiking neural network is solved, and the task of pattern
recognition could be fulfilled.

2.1. Encoding

The encoding part aims to generate spiking patterns that
represent the input stimuli. The temporal encoding is used over
rate-based encoding when patterns within the encoding window
[17] provide information about the stimulus that cannot be
obtained from spike count. The latency code [17] is a simple
example of temporal encoding. It encodes information in the
timing of response relative to the encoding window, which is
usually defined with respect to stimulus onset. The single spike
latencies are used to encode stimulus information in our system.
Within the encoding window, each input neuron fires only once.
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Fig. 1. Architecture for pattern recognition. Left: a schematic of the system
architecture. Right: encoding neuron model. It has M input points connected to
part of the stimulus and one output. It performs a mapping function that converts a
value string to a temporal spike.
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