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a b s t r a c t

We present a neuromorphic spiking neural network, the DELTRON, that can remember and store
patterns by changing the delays of every connection as opposed to modifying the weights. The
advantage of this architecture over traditional weight-based ones is simpler hardware implementation
without multipliers or digital–analog converters (DACs) as well as being suited to time-based computing.
The name is derived due to similarity in the learning rule with an earlier architecture called tempotron.
The DELTRON can remember more patterns than other delay-based networks by modifying a few delays
to remember the most ‘salient’ or synchronous part of every spike pattern. We present simulations of
memory capacity and classification ability of the DELTRON for different random spatio-temporal spike
patterns. The memory capacity for noisy spike patterns and missing spikes is also shown. Finally, we
present SPICE simulation results of the core circuits involved in a reconfigurable mixed signal
implementation of this architecture.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction: delay-based learning approach

Neuromorphic systems emulate the behavior of biological
nervous systems with the primary aims of providing insight into
computations occurring in the brain as well as enabling artificial
systems that can operate with human-like intelligence at power
efficiencies close to biological systems. Though initial efforts were
mostly limited to sensory systems [1,2], the focus of research has
slowly shifted towards the implementation of functions of higher
brain regions like recognition, attention, classification, etc. How-
ever, most of the previous researchers have primarily focused on
the implementations of somatic nonlinearity, compact learning
synapses and address event representation (AER) for asynchronous
communication [3–9]. As a result, there is a need for modeling and
understanding the computational properties of other components
of our neurons: the axons and dendrites which have been largely
ignored till now. This is also facilitated by recent experimental and
computational work which has shed light on possible computa-
tional roles of these structures.

The research on spiking neural networks has led to the emer-
gence of a new paradigm in neural networks, which has garnered a
lot of interest lately. Several recent studies have presented spiking
neural networks to implement biologically consistent neural and

synaptic mechanisms [10–12]. As shown by Izhikevich, spiking
neural networks with axonal delays have immense information
capacity [13]. These networks can exhibit a large number of
stereotypical spatio-temporal firing patterns through a combination
of spike timing dependent plasticity (STDP) and axonal propagation
delays. Learning schemes based on modifying delays can be utilized
to read out these firing patterns. This has spurred a renewed
interest in the possible role of delays and has even led to analog
VLSI implementations of delay models of axons [14,15]. In this
paper we present a computational model, DELTRON, which can
learn spatio-temporal spike patterns by modifying the delay asso-
ciated with the spikes arriving at a synaptic afferent. Compared to
most earlier implementations [14,15] that need ‘N’ delay storage
elements to memorize a single ‘N’ dimensional pattern, we show
much increased memory capacity by modifying only a few delays to
memorize the most ‘salient’ part of each pattern. Here ‘salient’
refers to that part of a spatio-temporal patternwhich has maximum
synchrony or the largest number of coincidental spikes when
observed at the soma of the post-synaptic neuron. The synchronous
activity of the neurons has been linked to a variety of cognitive
functions. Therefore, delay adaptation, which utilizes the synchrony
in spike patterns, can play a role in object recognition, attention and
neuronal communication.

In the past, several delay learning schemes have been pre-
sented for non-spiking networks [16–18] and some of them have
been used in applications like word recognition [19]. In the context
of spiking neurons and pulse coupled networks, delay adaptation
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was implemented in [20,21] for biologically motivated networks
using standard analog hardware elements. The delay learning rule
for recognizing impulse patterns is similar to our method except
that in these studies, the delay parameters are adjusted until all
the impulses are coincident while we modify only a subset of
delays corresponding to the most synchronous spikes. Our learn-
ing rule, initially presented in [22], is similar to the one presented
in [23] with two differences: we do not have the nonlinear
membrane voltage dependent weighting term and we use a single
time-based delay adjustment instead of an integral over a time
period. More importantly, there is no discussion on the memory
capacity of such networks in [23] with the authors having
demonstrated the memorization of a single pattern only.

This paper is organized as follows: introduction to delay-based
learning approaches is given after which, Section 1 presents the
computational architecture of DELTRON followed by the learning
algorithm in Section 2. Section 4 presents simulation results. We
discuss details of an efficient mixed-signal VLSI implementation of
this algorithm in Section 5 and follow it with conclusions in
Section 6.

2. The DELTRON model

2.1. Network architecture

Fig. 1 depicts the architecture of the DELTRON that comprises
an integrate and fire (I&F) neuron at the output and N excitatory
synapses that receive spiking inputs. Each of these incoming
spikes create a delayed excitatory post-synaptic potential (EPSP)
that gets linearly summed at the soma. In the bio-physical world,
such delays could be attributed to synaptic processes [23] or
dendritic propagation times [24]. If the summed membrane
potential crosses a threshold, Vthr, the I&F neuron generates a
spike and resets the membrane voltage [25]. We want to develop a
learning rule that can modify the delays associated with each
input so that only a certain desired set of P patterns can fire the
neuron by making the membrane potential cross the threshold.

In this paper, we consider applying the DELTRON to classifying or
memorizing patterns in the case where there is exactly one spike on
each input i at a random time xi within a fixed time period T, i.e.
xiA ½1 T �; i¼ 1;2;…;N. This case corresponds to applying the

DELTRON to classify signals coming from a sensor employing
time-to-first-spike (TTFS) encoding [26–28]. Time based encoding
is becoming popular recently due to the reduced supply voltage
(leading to lower voltage headroom) and increased speeds (leading
to higher temporal resolution) in today's deeply scaled VLSI
processes; hence, the DELTRON will be very useful as a back end
processor for all such temporal encoding sensory systems. Formally,
we can express the membrane voltage V(t) as a sum of the EPSPs
generated by all incoming spikes as

VðtÞ ¼∑
i
Kðt�tiÞ ð1Þ

where K : R-R is the EPSP kernel function, di is the delay of the i-th
branch and ti ¼ xiþdi; i¼ 1;2;…;N. The vector x¼(x1, x2,…, xN)
constitutes a spike pattern presented to the network. In this work,
we consider the fast rising and slowly decaying PSP kernel to be
given by KðtÞ ¼ V0ðexp½�ðtÞ=τ��exp½�ðtÞ=τs�Þ, where τ is the
synaptic current fall time constant and τs the synaptic current rise
time constant. Our analysis is quite general and is applicable to
other forms of the function K as well. As mentioned earlier, the I&F
output neuron elicits a spike when the voltage V(t) crosses the
threshold voltage Vthr. Let nspk denote the number of spikes fired by
the output neuron for the presentation of a pattern. Then, the
operation of the neuron is described as

If VðtÞ4Vthr ;

VðtÞ-0
nspkðtÞ ¼ nspkðt�1Þþ1ðnspkð0Þ ¼ 0Þ ð2Þ
The final output of the network, y, is a logical variable having a
value of 1 if the pattern is recognized. We define this operation by

y¼ 1 if nspk;final40
¼ 0 otherwise ð3Þ

where nspk;final is the final value of nspk after the presentation of the
pattern is completed. In other words, we declare the pattern
recognized if the neuron fires one or more spikes in the entire
duration.

2.2. Input pattern space

Wementioned earlier that the input spike pattern to the network
is x¼ ðx1; x2;…; xNÞwhere xiA ½1 T �; i¼ 1;2;…;N. For any real world
inputs, there is a finite precision Δt at which an input xi can change.

Fig. 1. Delay-based learning model where N synaptic afferents receive incoming spikes fired at time xi and create EPSP waveforms delayed by di, i¼1, 2,…, N. Spike delays
d¼ ðd1; d2; d3;…; dN Þ are modified such that membrane potential V(t) crosses the Vthr.
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