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a b s t r a c t

Twin support vector machines (TWSVMs), as the representative nonparallel hyperplane classifiers, have
shown the effectiveness over standard SVMs from some aspects. However, they still have one serious
defect restricting their further study and real applications: they have to compute and store the inverse
matrices before training, it is intractable for many applications such as that data appear with a huge
number of instances as well as features. This paper proposes a Linear Nonparallel Support Vector
Machine, termed as L2-TWSVM, to deal with large-scale data based on an efficient solver – dual
coordinate descent (DCD) method. Both theoretical analysis and experiments indicate that our method is
not only suitable for large scale problems, but also has better generalization performance than linear
TWSVMs and linear SVMs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machines (SVMs), having their roots in statis-
tical learning theory, are useful for pattern classification [1–4]. For
the binary classification problem with the training set

T ¼ fðx1; y1Þ;…; ðxl; ylÞg; ð1Þ

where xiARn; yiAf1; �1g, i¼ 1;…; l, SVM finds the optimal separ-
ating hyperplane by maximizing the margin between two parallel
support hyperplanes, which involves the minimization of a quad-
ratic programming problem (QPP):

min
w;b;ξ

1
2
ð‖w‖2þb2ÞþC ∑

l

i ¼ 1
ξi;

s:t: yiððw � xiÞþbÞZ1�ξi; i¼ 1;…; l;

ξiZ0; i¼ 1;…; l; ð2Þ

which is called the L1-SVM since the L1-loss function
ξ¼maxð1�yiððw � xiÞþbÞ;0Þ is applied, while L2-SVM solves

min
w;b;ξ

1
2
ð‖w‖2þb2ÞþC ∑

l

i ¼ 1
ξ2i ;

s:t: yiððw � xiÞþbÞZ1�ξi; i¼ 1;…; l;

ξiZ0; i¼ 1;…; l; ð3Þ

since the L2-loss function ξ2i ¼ ðmaxð1�yiððw � xiÞþbÞ;0ÞÞ2 is applied.

For this primal problem, L2-SVM solves its Lagrangian dual
problem:

min
α

1
2
α>Qα�e>α;

s:t: αiZ0; i¼ 1;…; l; ð4Þ

where Q ¼QþD, D is a diagonal matrix, and Qij ¼ yiyjð ~xi � ~xjÞ, and
Dii ¼ 1=ð2CÞ, here ~xi ¼ ðx>

i ;1Þ> .
An SVM usually maps the training set into a high-dimensional

space via a nonlinear function ϕðxÞ, then the kernel function
Kðx; x0Þ is applied to take instead of the inner product ðϕðxÞ�
ϕðx0ÞÞ, such SVM is called a nonlinear SVM. However, in some
applications such as document classification with the data appear-
ing in a rich dimensional feature space, linear SVM in which the
data are not mapped, has the similar performances with nonlinear
SVM. For linear SVM, many methods have been proposed in large-
scale scenarios [5–15].

Recently, some nonparallel hyperplane classifiers have been
proposed [16,17]. For the twin support vector machine (TWSVM) [17],
it seeks two nonparallel proximal hyperplanes such that each
hyperplane is closer to one of the two classes and is at least one
distance from the other. Experimental results [17,18] have shown
the effectiveness of TWSVM over standard SVM on UCI datasets.
Furthermore, it is implemented by solving two smaller QPPs than
problem (4) which increases the TWSVM training speed by
approximately fourfold compared to that of SVM. TWSVMs have
been studied extensively [19–25].

However, existing TWSVMs have one serious defect which
restricts their further study and real applications: although TWSVMs
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solve two smaller QPPs and can be solved by successive over-
relaxation (SOR) technique [22] or dual coordinate descent (DCD)
method [26], they have to compute the inverse of matrices before
training, it is in practice intractable for a large dataset.

In this paper, for linear classification problems, we propose a
novel linear nonparallel twin support vector machine, termed as
linear L2-TWSVM, for solving very large linear problems. Our
L2-TWSVM has two incomparable advantages including (1) the
two problems constructed have the dual problems with elegant
formulation and can be solved efficiently by the DCD method,
more importantly, we do not need to compute and store the large
inverse matrices any more before training; (2) linear TWSVMs and
linear L2-SVM are the special cases of linear L2-TWSVM, which
guarantees theoretically that the linear L2-TWSVM has superior
generalization ability to linear TWSVMs linear L2-SVM.

The remainder of this paper is arranged as follows: Section 2
briefly introduces the TWSVM and its improved edition TBSVM.
Section 3 proposes the linear L2-TWSVM, then its efficient solver –
DCD method. Section 4 details the evaluations with respect to
accuracy and efficiency, and Section 5 draws the conclusion.

2. Background

In this section, we briefly introduce two variations of
the TWSVM.

2.1. TWSVM

Consider the binary classification problem with the training set

T ¼ fðx1; þ1Þ;…; ðxp; þ1Þ; ðxpþ1; �1Þ;…; ðxpþq; �1Þg; ð5Þ
where xiARn; i¼ 1;…; pþq. For the linear case, TWSVM [17] seeks
two nonparallel hyperplanes

ðwþ � xÞþbþ ¼ 0 and ðw� � xÞþb� ¼ 0 ð6Þ
by solving two QPPs

min
wþ ;bþ ;ξ�

1
2

∑
p

i ¼ 1
ððwþ � xiÞþbþ Þ2þc1 ∑

pþq

j ¼ pþ1
ξj;

s:t: ðwþ � xjÞþbþ r�1þξj; j¼ pþ1;…; pþq;

ξjZ0; j¼ pþ1;…; pþq; ð7Þ

and

min
w� ;b� ;ξþ

1
2

∑
pþq

i ¼ pþ1
ððw� � xiÞþb� Þ2þc2 ∑

p

j ¼ 1
ξj;

s:t: ðw� � xjÞþb� Z1�ξj; j¼ 1;…;p;

ξjZ0; j¼ 1;…; p; ð8Þ

where ci, i ¼ 1, 2 are the penalty parameters. The solutions
ðwþ ; bþ Þ and ðw� ; b� Þ are derived by solving their dual problems:

min
α

1
2
α>GðH>HÞ�1G>α�e>

2 α;

s:t: 0rαrc1e2 ð9Þ
and

min
γ

1
2
γ>HðG>GÞ�1H> γ�e>

1 γ;

s:t: 0rγrc2e1 ð10Þ
where α¼ ðα1;…;αqÞ> ARq, γ ¼ ðγ1;…; γpÞ> ARp, H ¼ ½A; e1�
ARp�ðnþ1Þ, G¼ ½B; e2�ARq�ðnþ1Þ, e1 ¼ ð1;…;1Þ> ARp,
e2 ¼ ð1;…;1Þ> ARq, A¼ ðx1; x2;…; xpÞ> ARp�n, B¼ ðxpþ1; xpþ2;…;

xpþqÞ> ARq�n.
We can see that TWSVM solves two smaller QPPs, which claims

four times faster than standard SVM [17]. Unfortunately, it needs
to compute and store the inverse matrices ðH>HÞ�1 and ðG>GÞ�1

before training. Since H>H and ðG>GÞ�1 are all of order nþ1,
therefore TWSVM will fail for the problems with high dimensions,
such as document classification with the data appearing in a rich
dimensional feature space. Furthermore, in order to deal with the
case when H>H or G>G is singular and avoid the possible ill
conditioning, the inverse matrices ðH>HÞ�1 and ðG>GÞ�1 are
approximately replaced by ðH>HþϵIÞ�1 and ðG>GþϵIÞ�1, respec-
tively, where I is an identity matrix of appropriate dimensions, ϵ is
a positive scalar, small to keep the structure of data. After solving
the dual problems (9) and (10), the solutions of problems (7) and
(8) can be obtained by

ðw>
þ ; bþ Þ> ¼ �ðH>HÞ�1G>α; ð11Þ

ðw>
� ; b� Þ> ¼ �ðG>GÞ�1H> γ: ð12Þ

Thus an unknown point xARn is predicted to the Class by

Class¼ arg min
k ¼ � ;þ

jðwk � xÞþbkj; ð13Þ

where j � j is the perpendicular distance of point x from the planes
ðwk � xÞþbk ¼ 0, k¼ � ; þ .

For the nonlinear case, two kernel-generated surfaces instead
of hyperplanes are considered and two other primal problems
different from problems (7) and (8) are constructed, which can be
referred to [17].

2.2. TBSVM

An improved TWSVM, termed as TBSVM, is proposed in [22]
whereas the structural risk is claimed to be minimized by adding a
regularization term with the idea of maximizing some margin. For
the linear case, they solve the following two primal problems:

min
wþ ;bþ ;ξ�

c3
2
ð‖wþ ‖2þb2þ Þþ

1
2

∑
p

i ¼ 1
ððwþ � xiÞþbþ Þ2þc1 ∑

pþq

j ¼ pþ1
ξj;

s:t: ðwþ � xjÞþbþ r�1þξj; j¼ pþ1;…; pþq;

ξjZ0; j¼ pþ1;…; pþq; ð14Þ

and

min
w� ;b� ;ξþ

c4
2
ð‖w� ‖2þb2� Þ

þ1
2

∑
pþq

i ¼ pþ1
ððw� � xiÞþb� Þ2þc2 ∑

p

j ¼ 1
ξj;

s:t: ðw� � xjÞþb� Z1�ξj; j¼ 1;…; p;

ξjZ0; j¼ 1;…; p: ð15Þ

Their dual problems are

min
α

1
2
α>GðH>Hþc3IÞ�1G>α�e>

2 α;

s:t: 0rαrc1e2 ð16Þ
and

min
γ

1
2
γ>HðG>Gþc4IÞ�1H> γ�e>

1 γ;

s:t: 0rγrc2e1: ð17Þ
Different from problems (9) and (10) with the possibility that H>H
or G>G is singular, problems (16) and (17) are derived without any
extra assumption and need not be modified any more. From this
point of view, TBSVM is more rigorous and complete than TWSVM.
However, TBSVM still need to compute and store the inverse
matrices ðH>Hþc3IÞ�1 and ðG>Gþc4IÞ�1. More unfortunately, for
different c3 and c4, they have to compute different inverse
matrices. It costs a huge amount of computation. For the nonlinear
case, similar to TWSVM two kernel-generated surfaces instead of
hyperplanes are considered and two other regularized primal
problems are constructed.
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