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a b s t r a c t

In past decades, tremendous growths in the amount of text documents and images have become
omnipresent, and it is very important to group them into clusters upon desired. Recently, matrix
factorization based techniques, such as Non-negative Matrix Factorization (NMF) and Concept Factor-
ization (CF), have yielded impressive results for clustering. However, both of them effectively see only
the global Euclidean geometry, whereas the local manifold geometry is not fully considered. Recent
research has shown that not only the observed data are found to lie on a nonlinear low dimensional
manifold, namely data manifold, but also the features lie on a manifold, namely feature manifold. In this
paper, we propose a novel algorithm, called dual-graph regularized concept factorization for clustering
(GCF), which simultaneously considers the geometric structures of both the data manifold and the
feature manifold. As an extension of GCF, we extend that our proposed method can also be apply to the
negative dataset. Moreover, we develop the iterative updating optimization schemes for GCF, and
provide the convergence proof of our optimization scheme. Experimental results on TDT2 and Reuters
document datasets, COIL20 and PIE image datasets demonstrate the effectiveness of our proposed
method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is one of the most important research topics in both
machine learning and data mining communities. It arms at
partitioning the data into groups of similar objects. An enormous
number and variety of methods have been proposed over the past
several decades to solve clustering problems [1]. Generally, clus-
tering methods can be categorized as agglomerative and parti-
tional. Agglomerative clustering methods group the data points
into a hierarchical tree structure using bottom-up approaches. The
procedure starts by placing each data point into a distinct cluster
and then iteratively merges the two most similar clusters into one
parent cluster. On the other hand, data partitioning methods
decompose the data set into a given number of disjoint clusters
which are usually optimal in terms of some predefined criterion
functions [2]. Both of them have been well studied and investi-
gated in previous literatures [3,4].

In the last decade, matrix factorization based approaches have
attracted considerable attention for clustering. With regard to
these methods, each text document or image in the corpus is

often treated as a data point in the high dimensional linear space.
Clustering analysis aims to look for similar data points and ensure
them within the same cluster in maximum degree. Intuitively,
similar samples are more likely to be grouped together than
different ones, and this could be attributed to the fact that
characteristics shared by similar ones in original data spaces are
inherited by new representations in lower dimensional spaces,
which makes the clustering more easily. There are particularly two
popular matrix factorization methods widely applied to clustering
analysis, i.e., Nonnegative Matrix Factorization (NMF) [5] and
Concept Factorization (CF) [2]. CF mainly strives to address the
limitations and meanwhile inherits all the strengths of NMF, such
as better semantic interpretation and easily derived clustering
results. In CF, each concept or component is modeled as a linear
combination of the data points while each data point consists of a
linear combination of the concepts. In general, CF is more
advantageous than NMF, because of its merits that it can be
applied to any data points taking both positive and negative
values. However, regardless of NMF or CF, they only consider using
the global Euclidean geometry to find new basis vectors, according
to how the new data representation is generated [6]. However,
many previous studies have shown human generated text data is
probably sampled from a submanifold of the ambient Euclidean
space [7–10]. In fact, the human generated text documents cannot
possibly “fill up” the high dimensional Euclidean space uniformly.
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Therefore, the intrinsic manifold structure needs to be considered
while learning new data representations [11]. Inspired by this,
Li et al. [12] proposed discriminative orthogonal nonnegative
matrix factorization (DON), in order to obtain a good data
representation that preserves both the local geometrical structure
and the global discriminating information. And also in order to
preserve the intrinsically geometrical structure and use the prior
knowledge, Li et al. [13] proposed locally constrained a-optimal
nonnegative projection (LCA). They are all NMF-based methods.

Recently, Cai et al. [11] proposed locally consistent concept
factorization (LCCF) based on CF to extract the underlying concepts
which are consistent with the low dimensional manifold structure.
The obtained concepts can well capture the intrinsic geometrical
structure and the documents associated with similar concepts can
be well clustered. However, the method mentioned above focuses
on one-sided clustering, i.e., clustering the data based on the
similarities along the feature. Considering the duality between
data points and features, several co-clustering algorithms have
been proposed and shown to be superior to traditional one-sided
clustering [14–20]. Gu et al. [19] proposed a Dual Regularized
Co-Clustering (DRCC) method based on semi-nonnegative matrix
tri-factorization. In order to discover an appropriate intrinsic
manifold, Li et al. [20] proposed realtional multimanifold co-cluste-
ring based on symmetric nonnegative matrix tri-factorization.
Based on NMF, Shang et al. [17] proposed Graph Dual Regularization
Non-negative Matrix Factorization (DNMF) for co-clustering, which
achieves an encouraging performance.

Motivated by recent progress in dual regularization [17–20]
and concept factorization [2,11], we propose a novel algorithm
called dual-graph regularized concept factorization for clustering
(GCF), which simultaneously considers the geometric structures of
the data manifold as well as the feature manifold. We encode the
geometric structure information of data and feature spaces by
constructing two nearest neighbor graphs, respectively. Our pro-
posed algorithm GCF is based on the CF, it can be optimized by
iterative multiplicative updating schemes, and their convergence
proof is been provided. To summarize, the main contributions of
this work include:

1. We propose a novel dual-graph regularized concept factoriza-
tion (GCF) algorithm which simultaneously considers the geo-
metric structure information contained in data points as well as
features.

2. We develop iterative multiplicative updating optimization
schemes to solve our proposed algorithm GCF, and provide
the convergence proof of the optimization scheme.

The remainder of this paper is organized as follows: Section 2
presents a brief overview of some related works. A novel GCF
algorithm is proposed in Section 3. As an extension of GCF, the
algorithm for negative data is described in Section 4. Experimental
results on many real-world datasets are presented in Section 5.
Section 6 is conclusions.

2. Related works

In this section, we briefly review some related works to our
research work.

2.1. NMF

Consider a data matrix X¼ ½x1;…;xN �ARM�N , each column of X
is a sample vector. NMF aims to decompose X into two low rank
nonnegative matrices, basis matrix U¼ ½uik�ARM�K and feature

matrix V¼ ½vjk�ARN�K , such that X�UVT , where K5 min fM;Ng.
Therefore, the objective optimization problem of NMF can be
concluded as follows:

min
U;V

: JNMF ¼ jjX�UVT jj2F s:t: U;VZ0 ð1Þ

Several methods have been proposed to find a solution to this
nonlinear optimization problem. The multiplicative updates rules
were first investigated by Lee and Seung [21] as follows:

utþ1
ik ¼ ut

ik
ðXVÞik

ðUVTVÞik
; vtþ1

jk ¼ vtjk
ðXTUÞjk
ðVUTUÞjk

ð2Þ

Theorem 1. [21] for X, U;VZ0, the objective function JNMF in Eq. (1)
is nonincreasing under each of the above multiplicative updating
rules stated in Eq. (2).

The nonnegative constraints on U and V require the combina-
tion coefficients among different basis can only be positive. This is
the most significant difference between NMF and other matrix
factorization methods, e.g., SVD. Unlike SVD, no subtractions can
occur in NMF. For this reason, it is believed that NMF can learn a
parts-based representation have been observed in many real
world problems such as face analysis, document clustering.

2.2. DRCC

Gu et al. [19] proposed a dual regularized co-clustering (DRCC)
method based on graph regularized (semi-)NMF, which imposes
graph regularization on both the data points and features cluster
assignment matrices. The objective optimization problem can be
concluded as follows:

min
U;S;V

: JDRCC ¼ jjX�USVT jj2F þλTrðVTLVVÞþμTrðUTLUUÞ

s:t: U;VZ0 ð3Þ

where λ; μZ0 are the regularization parameters, and S is a matrix

whose entries can take any signs. LV ¼DV�WV is the graph
Laplacian of the data graph which reflects the label smoothness

of the data points, where WV is the weight matrix and DV is a
diagonal matrix whose entries are column sums of WV .
LU ¼DU�WU is the graph Laplacian of the feature graph which
reflects the label smoothness of the feature. The multiplicative
updating rules minimizing Eq. (3) are given as [19].

S¼ ðUTUÞ�1UTXVðVTVÞ�1;

vjk’vjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½λWVVþAþ þVB� �jk
½λDVVþA� þVBþ �jk

vuut ;

uik’uik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½μWUUþPþ þUQ � �ik
½μDUUþP� þUQ þ �ik

s
ð4Þ

where A¼XTUS¼Aþ �A� , B¼ STUTUS¼ Bþ �B� , P¼XVST ¼
Pþ �P� and Q ¼ SVTVST ¼Q þ �Q � , where Aþ

ij ¼ ðjAijjþAijÞ=2,
A�
ij ¼ ðjAijj�AijÞ=2

Theorem 2. [19] For U;VZ0, the objective function JDRCC in Eq. (3) is
non-increasing under each of the above updating rules stated in Eq. (4).

Gu et al. [19] have proved that the iterative multiplicative
updating scheme stated in Eq. (4) will find local minima of the
objective function JDRCC.
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