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a b s t r a c t

In this paper, an efficient twin projection support vector regression (TPSVR) algorithm for data
regression is proposed. This TPSVR determines indirectly the regression function through a pair of
nonparallel up- and down-bound functions solved by two smaller sized support vector machine (SVM)-
type problems. In each optimization problem of TPSVR, it seeks a projection axis such that the variance
of the projected points is minimized by introducing a new term, which makes it not only minimize the
empirical variance of the projected inputs, but also maximize the empirical correlation coefficient
between the up- or down-bound targets and the projected inputs. In terms of generalization
performance, the experimental results indicate that TPSVR not only obtains the better and stabler
prediction performance than the classical SVR and some other algorithms, but also needs less number of
support vectors (SVs) than the classical SVR.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, support vector machines (SVMs) [1,2],
including support vector classification (SVC) and support vector
regression (SVR), have become useful tools for data classification
and regression due to the excellent generalization performance
and have been successfully applied to a variety of real-world
problems [3]. SVMs are principled and implement structural risk
minimization (SRM) that minimizes the upper bound of the
generalization error [1,2].

For the classical SVR, it finds a function f ðxÞ that has at most ε
deviation from the actually obtained targets for all the training
data, and at the same time is as flat as possible. In other words, we
do not care about errors as long as they are less than ε, but will not
accept any deviation larger than this. There exist many algorithms
to learn SVR, such as the sequential minimal optimization (SMO)
algorithm [4] and smooth SVR [5]. On the other hand, researchers
have proposed some new models, such as the least squares SVR
(LS-SVR) [6,7], the Huber loss function [1,2], and the parametric
insensitive SVR [8]. Some other methods include the normal
LS-SVR [9], geometric methods [10,11], etc.

Recently, in the spirit of twin support vector machine (TWSVM)
[12] and its extensions [13], we have presented a class of novel SVR
algorithms for data regression, including twin SVR (TSVR) [14,15]

and twin parametric insensitive SVR (TPISVR) algorithms [16].
These two algorithms determine indirectly the regressor through a
pair of nonparallel up- and down-bound functions solved by two
smaller sized SVM-type problems, which make them have a faster
learning speed than classical SVR. Specifically, the two optimiza-
tion problems of TSVR determine the ϵ-insensitive down- and up-
bound functions, while the two optimization problems of TPISVR
determine the parametric insensitive down- and up-bound func-
tions. Experimental results have shown that the two algorithms
obtain better generalization performance than the classical SVR,
especially when the noise is heteroscedastic, that is, the noise
strongly depends on the inputs [14,16]. However, the two algo-
rithms only aim at minimizing the empirical loss, but not embed-
ding any prior structural information of data into the learning
process, which leads the down- and up-bound functions to be
possibly contaminated by noise points.

In this paper, we present a novel SVR algorithm for data
regression, called the twin projection support vector regression
(TPSVR). This TPSVR algorithm also finds a pair of nonparallel
down- and up-bound functions by two smaller-sized SVM-type
optimization problems. More importantly, it introduces a pair of
new terms into the optimization problems to find two projection
axes for the training points, such that the projected points have as
small as possible empirical variance values on the down- and up-
bound functions. That is, it embeds the prior structural informa-
tion of data into the learning process. Compared with the TSVR
and TPISVR algorithms, this TPSVR absorbs the merits of TSVR and
TPISVR algorithms, i.e., a faster learning speed than the classical
SVR. Further, the up- and down-bound functions also reflect the
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characteristics of data points. More importantly, the introduced
projection axes in TPSVR make the projected points on the normal
directions of up- and down-bound functions have small variances.
Then, it leads TPSVR to obtain a better fitting on training points
since the prior structural information of data is embedded into the
learning process. Computational comparisons on some other SVR
algorithms in terms of generalization performance have been
made on several artificial and benchmark datasets, indicating that
the TPSVR not only obtains better generalization performance than
the classical SVR, TSVR, and TPISVR, but it also needs less numbers
of support vectors (SVs) than the classical SVR. In addition, the
results also show that this TPSVR is stabler than TPISVR in terms of
penalty factors.

The rest of this paper is organized as follows: Section 2 briefly
introduces the classical TSVR [14] and TPISVR [16]. Section 3
presents the proposed projection twin support vector regression
(TPSVR) model. Experimental results on some toy and benchmark
datasets are given in Section 4. Some conclusions and remarks are
drawn in Section 5.

2. Background

In this section, we briefly introduce classical TSVR [14] and
TPISVR [16]. Without loss of generality, the training samples are
denoted by a set D¼ fzi ¼ ðxi; yiÞ; i¼ 1;…;ng, where the inputs
xiAX �Rm, the targets (or responses) yiAR, i¼1,…,n, and
X denotes the space of the input patterns. Without loss general-
ization, we use the matrix X ¼ ½x1;…; xn�ARm�n and the vector
y¼ ½y1;…; yn�T ARn to denote the inputs and targets.

2.1. Twin support vector regression

TSVR [14] finds a pair of nonparallel functions around the data
points. In general, it considers the following pair of functions for
the linear case:

f 1ðxÞ ¼wT
1xþb1 and f 2ðxÞ ¼wT

2xþb2; ð1Þ
each one determines the ϵ-insensitive down- or up-bound function,
respectively, while the end regressor is defined as f ðxÞ ¼ 1

2 ðf 1ðxÞþ
f 2ðxÞÞ ¼ 1

2 ðw1þw2ÞTxþ1
2 ðb1þb2Þ. The functions f kðxÞ, k¼1,2 are

obtained by solving the following pair of QPPs:

min
1
2

∑
n

i ¼ 1
ðyi�ϵ1�ðwT

1xiþb1ÞÞ2þ
c1
n

∑
n

i ¼ 1
ξi

s:t: yi�ðwT
1xiþb1ÞZϵ1�ξi; ξiZ0; 8 i; ð2Þ

and

min
1
2

∑
n

i ¼ 1
ðyiþϵ2�ðwT

2xiþb2ÞÞ2þ
c2
n

∑
n

i ¼ 1
ηi

s:t: ðwT
2xiþb2Þ�yiZϵ2�ηi; ηiZ0; 8 i; ð3Þ

where ϵkZ0, k¼1,2, are insensitive parameters and ck40, k¼1,2,
are penalty factors given by users. By introducing the Lagrangian
functions of (2) and (3) and the Lagrangian vectors α and β, we
obtain the dual QPPs, which are

max �1
2α

THðHTHÞ�1HTαþ f THðHTHÞ�1HTα� f Tα

s:t: 0rαrc1
n
e; ð4Þ

and

max �1
2 β

THðHTHÞ�1HTβ�hTHðHTHÞ�1HTβþhTβ

s:t: 0rβrc2
n
e; ð5Þ

where the vectors f ¼ y�eϵ1, h¼ yþeϵ2, and H ¼ ½XT e�.

After optimizing (4) and (5), we obtain the augmented vectors

w1

b1

" #
¼ ðHTHÞ�1HT ðf �αÞ;

w2

b2

" #
¼ ðHTHÞ�1HT ðhþβÞ: ð6Þ

Then we obtain the estimated regressor.
For the nonlinear case, we will obtain similar formulations if

we map x to ½kðx1; xÞ;…; kðxn; xÞ�T , where kð�; �Þ is the inner product
in the feature space H, such as the Gaussian kernel. Here we omit
the description because of the space limitation. The readers can
refer to [14,15].

2.2. Twin parametric insensitive support vector regression

TPISVR [16] also derives a pair of nonparallel functions around
the data points through two QPPs. Specifically, it finds two linear
functions (1); each one determines the parametric insensitive
down- and up-bound regression functions.

The parametric insensitive down- and up-bound regression
functions are optimized by solving the following pair of QPPs:

min
1
2
wT

1w1�
ν1
n

∑
n

i ¼ 1
ðwT

1xiþb1Þþ
c1
n

∑
n

i ¼ 1
ξi

s:t: yiZwT
1xiþb1�ξi; ξiZ0; 8 i; ð7Þ

and

min
1
2
wT

2w2þ
ν2
n

∑
n

i ¼ 1
ðwT

2xiþb2Þþ
c2
n

∑
n

i ¼ 1
ηi

s:t: yirwT
2xiþb2þηi; ηiZ0; 8 i: ð8Þ

For the optimization problem (7), the second term in the
objective function is to optimize the sum of estimation values of
training points by f 1ðxÞ. Specifically, the objective function of (7)
maximizes ∑n

i ¼ 1ðwT
1xiþb1Þ. Therefore, optimizing it leads the

function f 1ðxÞ to be as large as possible. The constraints require
the estimated values of training points obtained by f 1ðxÞ to be less
than the response values of the training points. That is, the
response values of training points should be larger than the
estimation values obtained by f 1ðxÞ. Otherwise, the slack variables
ξiZ0, i¼1,…,n, are introduced to measure the errors. The third
term of the objective function minimizes the sum of error vari-
ables, which attempts to over-fit the training points. For the
optimization problem (8), it has similar interpretations.

By introducing the Lagrangian functions and vectors α and β
for the problems (7) and (8), we obtain the corresponding dual
QPPs, which are

max �1
2
αTXTXα�yTαþν1

n
eTXTXα

s:t: 0rαrc1
n
e; eTα¼ ν1; ð9Þ

and

max �1
2
βTXTXβþyTβþν2

n
eTXTXβ

s:t: 0rβrc2
n
e; eTβ¼ ν2: ð10Þ

After optimizing (4) and (5), we obtain the weight vectors
wk; k¼ 1;2

w1 ¼ ∑
n

i ¼ 1

ν1
n
�αi

� �
xi; w2 ¼ ∑

n

i ¼ 1
βi�

ν2
n

� �
xi: ð11Þ

Then, we can predict the target value for an unknown input x.
Note that we can use the same method as the classical SVR to

deal with the nonlinear TPISVR. Here we also omit the details
because of the space limitation. The interested readers can refer to
[16]. In general, this TPISVR model is suitable for many real-world
problems, especially when the noise is heteroscedastic. However,
it often leads to over-fitting results for learning the parametric
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