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a b s t r a c t

NMF is a blind source separation technique decomposing multivariate non-negative data sets into
meaningful non-negative basis components and non-negative weights. There are still open problems to
be solved: uniqueness and model order selection as well as developing efficient NMF algorithms for large
scale problems. Addressing uniqueness issues, we propose a Bayesian optimality criterion (BOC) for NMF
solutions which can be derived in the absence of prior knowledge. Furthermore, we present a new
Variational Bayes NMF algorithm VBNMF which is a straight forward generalization of the canonical
Lee–Seung method for the Euclidean NMF problem and demonstrate its ability to automatically detect
the actual number of components in non-negative data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Decomposing any given data set into nonnegative factors has
received wide-spread interest within the machine learning com-
munity in recent years [16]. The idea first appeared as positive
matrix factorization in [50,49] and became popular as non-
negative matrix factorization (NMF) through the seminal paper
by Lee and Seung [40]. Similar objectives were pursued also by
nonnegative independent component analysis [51,52] or rectified
factor analysis [29]. Originally, NMF was introduced as an unsu-
pervised, parts-based learning paradigm involving the approxima-
tive decomposition of a nonnegative matrix X into a product of
two nonnegative matrices, W and H, via a multiplicative update
algorithm. All these data analysis tools account for the fact that
many physical measurements yield results with exclusively
non-negative quantities which can be approximated by a non-
subtractive superposition of exclusively non-negative underlying
features which explain the systematic structure of the data set. Also
for physical reasons the superimposed components cannot partially
compensate each other. Hence decomposing any measurements into
a parts-based representation seems more natural than other con-
straints often invoked in exploratory matrix factorization procedures

which would allow for partial compensation of the components
upon their superposition.

NMF has seen numerous applications in recent years [16,8]
where it has been primarily applied in an unsupervised setting
in image and natural language processing [42,58,13] and sparse
coding [33,70]. Further applications include text mining [7] and
music transcription [68]. More recently, it has been successfully
utilized also in a variety of applications in computational biology
[17], especially in molecular pattern discovery [56,57,59].

Basically, NMF can be formulated as a minimization problem. A
suitable cost function such as the quadratic error function DE

DEðX;WHÞ ¼ 1
2
∑
i
∑
j
ðXij�½WH�ijÞ2 ð1Þ

comes to be minimized subject to the constraint that either factor
matrix has only non-negative entries, i.e. WZ0, HZ0. The cost
function DE quantifies the reconstruction error E between an
ðN �MÞ-dimensional non-negative data matrix X and the product
of an ðN � KÞ-dimensional weight matrix W and a ðK �MÞ-dimen-
sional matrix H of hidden features or sources according to the data
model:

X¼WHþE subject to WZ0; HZ0: ð2Þ
Vavasis [74] recently proofed that this problem is NP-hard.

Without the nonnegativity constraint, singular value decomposition
(SVD) provides an optimal solution to the factorization problem.
Arora et al. recently discussed conditions when the NMF problem
can be solved in polynomial time [4]. As posed above, NMF can be
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considered a constrained, unsupervised feature extraction techni-
que. However, usually K is chosen such that KðNþMÞ5NM which
brings clustering aspects into play as well but also raises the
question of proper model order selection (MOS).

The cost function (1) is just the most popular choice for NMF as
it is based on the Frobenius norm of the reconstruction error of the
data matrix factorization as a proper distance measure. Other
popular cost functions are based on information theoretic con-
cepts like the generalized Kullback–Leibler divergence, the Ita-
kura–Saito divergence or similar divergences [15,18] (see [16] for a
recent review). Positivity constraints are, however, rarely sufficient
to extract the underlying features uniquely. Hence, further con-
straints based on sparseness considerations [32,70,27] or mini-
mum volume requirements [63,3] have been considered in
addition. Such regularizing constraints have been added to enforce
certain characteristics of the solutions, or to impose prior knowl-
edge about the application considered. Technically, additional
constraints can be realized via additional penalty terms in the
NMF cost function, for example

DconstrðX;WHÞ ¼ 1
2
∑
i
∑
j
ðXij�½WH�ijÞ2þλWf ðWÞþλHgðHÞ ð3Þ

where the scalars λW , λH determine the balance between reconstruc-
tion accuracy and the desired properties of the factor matrices which
are expressed by suitable functions f and g.

Also various optimization techniques and sampling procedures
such as Expectation–Maximization (EM), Markov Chain Monte
Carlo (MCMC) or variational Bayes (VB) [19], based on the Indian
Buffet Process factor analysis model [37,28] or nonparametric
Bayesian approaches [30] have been presented since. To further
improve the performance of NMF algorithms and to reduce the
risk of getting stuck in local minima, a multi-layer technique has
been advocated recently [15,14]. This technique has been proposed
earlier already in connection with hybridizing sparse NMF with
a genetic algorithm to optimize the related discontinuous cost
function [71].

Proofs of convergence of NMF algorithms are scarce (see the
discussions in [69,8]) though for the popular class of multiplicative
update algorithms convergence to a stationary point could
be proven [43]. Also uniqueness of NMF-solutions is still an open
issue despite some recent attempts to deal with the subject
[20,33,73]. Necessary and sufficient conditions have recently been
formulated for a given NMF solution to be unique [39]. In [63] a
geometric approach has been taken considering the determinant
of the span of basis vectors and optimizing the decomposition for
a minimal determinant. Unique solutions, as the term will be used
in the following, may still be subject to scaling and permutation
indeterminacies which are ubiquitous in many blind source separa-
tion contexts. There are two popular routes to enforce uniqueness
of the solutions. While in [32], arguments from sparse coding are
invoked, the development of positive matrix factorization as sur-
veyed in [31] rather proposes application-driven solutions requiring
background knowledge. Both approaches are limited to special
applications where specific information about the data is available
or specific assumptions concerning the composition of data are
necessary. The issue of model order selection (MOS) within NMF
decompositions relates to the application of information theoretic
criteria like Akaike's Information Criterion (AIC) [1,2], the Minimum
Description Length (MDL) criterion [54] which is equivalent to the
Bayes Information Criterion (BIC) [67], or the Risk Inflation Criterion
(RIC) [22–24]. Recently, however, automatic relevance detection
(ARD) schemes have been discussed in relation with Bayesian
approaches to NMF [10,21,72] and showed promising results.

The rest of this paper is organized as follows: in Section 2 we
present a short overview of Bayesian approaches addressing issues
of uniqueness and model order selection. Next we present in

Section 3 a Bayesian Optimality Condition (BOC) for NMF with an
Euclidean distance measure, and show that it leads to a minimum
volume constraint for the optimization of an L2-norm reconstruc-
tion error proposed earlier [63]. In Section 4 we finally present a
new variational Bayesian NMF (VBNMF) approach to tackle the
problem of model order selection and show in Section 5 with toy
data sets that this approach implements an automatic relevance
detection scheme. Finally, in 6, the potential of the VBNMF
algorithm on binary toy data is explored. A preliminary version
of this paper has been presented at a conference [60].

2. Bayesian approaches to NMF

While NMF was introduced in terms of optimizing a suitable
cost function subject to non-negativity constraints, it is well-
known that many popular NMF cost functions can be related to
statistical models of the reconstruction error of the decomposition
via Maximum Likelihood (ML) estimations. For example, the
squared Euclidean distance measure is based on Gaussian error
statistics, while KL- or IS-divergences as cost functions relate to
alternative error statistics given by Poisson or Gamma distributed
noise kernels. Hence, constrained optimization of proper cost
functions can be interpreted within a statistical perspective as
maximum likelihood estimation problems (see e.g. [55,15,64,21]).
This opens the field to a conceptually more principled approach
based on Bayesian probabilistic interpretations of NMF. It is not
accidental that the Richardson–Lucy algorithm which was first
presented in 1972 in a paper entitled Bayesian-Based Iterative
Method of Image Restoration [53] is one of the forefathers of
modern NMF algorithms [16].

Maximum Likelihood estimation is based on adequate recon-
struction error statistics. For example, assuming the entries Eij of
the reconstruction error matrix E in Eq. (2) to be independently
and identically distributed according to a Gaussian distribution
with zero mean and variance sr

2, the joint distribution of all data
items Xij factorizes according to the following equation:

PðXjW;HÞ ¼∏
i
∏
j

1ffiffiffiffiffiffi
2π

p
sr

exp �1
2

Xij�½WH�ij
sr

� �2
 !

ð4Þ

Note that Eq. (2) implies the assumption of additive i.i.d.
Gaussian noise. Hence, it is only an approximation, since the left
hand side, i.e. the difference Xij�Eij could turn negative, in
principle. Since the right hand side of this equation, i.e. the term
½WH�ij is non-negative by definition, and the observed data is also
non-negative, the noise cannot be independent from the data and
small observations Xij are related to low noise levels Eij in practice.
Since in the following we will consider situations only where
the noise parameter sr is sufficiently small, this subtlety can
be neglected here. In the following, we will refer to Eq. (4) as
Gaussian likelihood for NMF.

For Gaussian noise kernels, maximizing the log-likelihood of
the data corresponds to minimizing the quadratic error function
DE (see Eq. (1)). However, in addition to specifying proper cost
functions according to data statistics, suitable prior distributions
can be used to integrate existing knowledge about the data and
enforce desired characteristics of the solutions. For example, non-
negative sparse coding [32] actually is a maximum a posteriori
(MAP) estimation, assuming independent exponential prior dis-
tributions of the weights Wij and flat priors on the features Hkj.
Several papers suggest Bayesian techniques to explicitly incorpo-
rate prior knowledge on the factor matrices in NMF, including
independent Gamma priors [48], Gaussian process priors [64], or
Gamma chain priors [75] for audio signal modeling. Also various
volume priors have been discussed in the context of volume
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