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a b s t r a c t

Design of an effective and efficient PID controller to obtain high-quality performances such as high
stability and satisfied transient response is of great theoretical and practical significance. This paper
presents a novel design method for PID controllers based on the binary-coded extremal optimization
algorithm (BCEO). The basic idea behind the proposed method is encoding the PID parameters into
a binary string, evaluating the control performance by a more reasonable index than the integral of
absolute error (IAE) and the integral of time weighted absolute error (ITAE), updating the solution by
the selection based on power-law probability distribution and binary mutation for the selected bad
elements. The experimental results on some benchmark instances have shown that the proposed BCEO-
based PID design method is simpler, more efficient and effective than the existing popular evolutionary
algorithms, such as the adaptive genetic algorithm (AGA), the self-organizing genetic algorithm (SOGA)
and probability based binary particle swarm optimization (PBPSO) for single-variable plants. Moreover,
the superiority of the BCEO method to AGA and PBPSO is demonstrated by the experimental results on
the multivariable benchmark plant.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It has been widely recognized that Proportional-Integral-
Derivative (PID) control is still one of the simplest but most
efficient control strategies for many real-world control problems
[1–4], although a variety of advancements have been gained in
control theories and practices. How to design and tune an effec-
tive and efficient single-variable and especially multivariable PID
controller to obtain high-quality performances such as high stabi-
lity and satisfied transient response is of great theoretical and
practical significance. This issue has attracted considerable atten-
tions by some researchers using evolutionary algorithms [5,6],
such as the genetic algorithm (GA) [7,8], particle swarm optimiza-
tion (PSO) [9–12], differential evolution (DE) [13,14], and multi-
objective optimization algorithms [6,15]. However, the issue of
designing and tuning PID controllers efficiently and adaptively
is still open. As a consequence, this paper focuses on addressing
this issue by adopting another novel optimization algorithm called
binary-coded extremal optimization in the attempt to obtain
better performances.

Originally inspired by far-from-equilibrium dynamics of self-
organized criticality (SOC) [16,17], extremal optimization (EO)
[18,19] provides a novel insight into optimization domain because
it merely selects against the bad instead of favoring the good
randomly or according to a power-law distribution. The basic EO
algorithm and its modified versions have been successfully applied
to a variety of benchmark and real-world engineering optimiza-
tion problems, such as graph partitioning [20], graph coloring [21],
traveling salesman problem [22,23], maximum satisfiability (MAX-
SAT) problem [24–26], heat pipe optimal design [27], and steel
production scheduling [28]. The more comprehensive introduction
concerning EO is referred to the surveys [29,30]. However, there
are only few reported researches concerning the design of PID
controllers based on EO. In [31], an improved generalized EO
algorithm is proposed for designing two-degree-of-freedom PID
regulator. This paper focuses on a generalized design framework
based on binary coded EO (BCEO) for PID controllers, especially for
more complex multivariable PID controllers. The basic idea behind
the BCEO-based PID controller design method is encoding the PID
parameters into a binary string, evaluating the control perfor-
mance by a more reasonable index than the integral of absolute
error (IAE) and the integral of time weighted absolute error (ITAE),
updating the solution by the selection based on power-law prob-
ability distribution and binary mutation for the selected bad
elements. Comparing with the existing popular evolutionary
algorithms, e.g., adaptive GA (AGA) [32], self-organizing genetic
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algorithm (SOGA) [8], probability based binary PSO (PBPSO) [11],
etc., the proposed BCEO method in this paper is simpler, more
efficient and effective. Its superiority is demonstrated by the
experimental results on some benchmark single-variable and
multivariable instances.

The rest of this paper is organized as follows. Section 2 presents
preliminaries concerning on PID controller and EO used in this
paper. In Section 3, the BCEO algorithm for the design of PID
controllers is proposed. The experimental results on benchmark
engineering instances are given and discussed in Section 4. Finally,
we give the conclusion and open problems in Section 5.

2. PID controllers and extremal optimization

2.1. PID controllers and its performance index

A standard control system with a PID controller D(s) and
controlled plant G(s) is shown in Fig. 1. Let us consider firstly the
simplest case, single-input and single-output control system. The
transfer function D(s) of a standard single-variable PID controller
[1] is generally expressed as the following form:

DðsÞ ¼ KP 1þ 1
TIs

þTDs
� �

¼ KPþKI
1
s
þKDs ð1Þ

where TI and TD are the integral time constant and the derivative
time constant, respectively, KP, KI, and KD are the proportional gain,
the integral gain, and the derivative gain, respectively, KI¼KP/TI
and KD¼KPTD.

The output U(s) of PID controller is described as follows:

UðsÞ ¼DðsÞEðsÞ ¼ KP 1þ 1
TIs

þTDs
� �

EðsÞ ¼ KPEðsÞþKI
1
s
EðsÞþKDsEðsÞ

ð2Þ

where E(s) is the transfer function of the system error e(t).
Furthermore, the continuous-time form of U(s) is also written as
the following equation:

uðtÞ ¼ KPeðtÞþKI

Z t

0
eðtÞdtþKD

deðtÞ
dt

ð3Þ

The discrete PID controller is described as follows:

uðkÞ ¼ KPeðkÞþKITs ∑
k

j ¼ 0
eðjÞþKD

Ts
½eðkÞ�eðk�1Þ� ð4Þ

where Ts is the sampling time.
Then, consider more complex case, an n�n multivariable plant

G(s) [7] in Fig. 1, which is given as follows:

GðsÞ ¼
g11ðsÞ ⋯ g1nðsÞ
⋮ ⋱ ⋮

gn1ðsÞ … gnnðsÞ

2
64

3
75 ð5Þ

The corresponding n�n multivariable PID controller is given as
follows:

DðsÞ ¼
d11ðsÞ ⋯ d1nðsÞ
⋮ ⋱ ⋮

dn1ðsÞ … dnnðsÞ

2
64

3
75 ð6Þ

where the form of dij(s) is characterized as the following equation:

dijðsÞ ¼ KPijþKIij
1
s
þKDijs; 8 i; jA 1;2;…;nf g ð7Þ

In most of previous research work, the integral of absolute
error (IAE) and the integral of time weighted absolute error (ITAE)
are generally used as the indices measuring the performances of
PID controllers [1]. However, these above indices are still not
sufficient to evaluate the control performances comprehensively
[8]. Here, another much more reasonable performance index is
presented by considering the following additional factors. The first
one is introduction of the square of the controllers' output, i.e.,R1
0 w2u2ðtÞdt in order to avoid exporting a large control value.
Secondly, the rising time w3tu is used to evaluate the rapidity of
the step response of a control system. The third one

R1
0 w4 ΔyðtÞ

�� ��dt
is added to avoid a large overshoot value.

Definition 1. The objective function (also called fitness) evaluat-
ing the control performance of a single-variable PID controller is
defined as follows [8]:

min J ¼ min

R1
0 ðw1jeðtÞjÞþw2u2ðtÞÞdtþw3tu; if ΔyðtÞZ0R1
0 ðw1jeðtÞjÞðþw2u2ðtÞþw4 ΔyðtÞ

�� ��Þdtþw3tu; if ΔyðtÞo0

(

ð8Þ
where e(t) is the system error, ΔyðtÞ ¼ yðtÞ�yðt�ΔtÞ, u(t) is the
control output at the time t, tu is the rising time, w1–w4 are the
weight coefficients, and w4⪢w1.

Definition 1 can be generalized for evaluating a multivariable
PID controller.

Definition 2. The objective function that evaluates the control
performance of a multivariable PID controller is defined as follows:

min J ¼ min

R1
0 ðw1 ∑

n

i ¼ 1
eiðtÞ
�� ��þw2∑

n

i
ui

2ðtÞÞdtþw3 ∑
n

i ¼ 1
tui; if ΔyiðtÞZ0

R1
0 ðw1 ∑

n

i ¼ 1
eiðtÞ
�� ��þw2∑

n

i
ui

2ðtÞþw4 ∑
n

i ¼ 1
ΔyiðtÞ
�� ��Þdtþw3 ∑

n

i ¼ 1
tui; if ΔyiðtÞo0

:

8>><
>>:

ð9Þ
where ei(t) is the i-th system error, ΔyiðtÞ ¼ yiðtÞ�yiðt�ΔtÞ, ui(t) is
the i-th control output at the time t, tui is the rising time of the i-th
system output yi, w1–w4 are the weight coefficients, and w4⪢w1.

2.2. Extremal optimization

The key operations of EO include the evaluation of global and
local fitness, selection of bad variables or elements, mutation and
improvement of the selected bad variables or elements. The basic
probability-based EO algorithm [18] is described as follows:

(1) Initialize configuration S randomly and set Sbest¼S and C
(Sbest)¼C(S), where Sbest is the best solution so far and C(Sbest)
is the global fitness of Sbest.

(2) For the current configuration S,
(a) Evaluate the local fitness λi for each variable xi and rank all the

variables according to λi, i.e., find a permutation П1 of the
labels i such that λΠ1ð1ÞZλΠ1ð2ÞZ…ZλΠ1ðnÞ.

(b) Select a rank П1(k) according to a probability distribution
PðkÞ; 1rkrn and denote the corresponding variable as xj.

(c) Generate the new solution Snew so that xj must be according to
some mutation rules.

(d) If C(Snew)oC(Sbest) then Sbest¼Snew.
(e) Accept S¼Snew unconditionally.
(3) Repeat at step (2) as long as desired.
(4) Return Sbest and C(Sbest).

It is obvious that the probability distributions used for selection
of bad variables or elements play critical roles in controlling the
performances of the above EO algorithm. Power-law distributionFig. 1. A control system with PID controller.
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