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a b s t r a c t

A recurrent neural network solving the approximate nonnegative matrix factorization (NMF) problem is
presented in this paper. The proposed network is based on the Lagrangian approach, and exploits a
partial dual method in order to limit the number of dual variables. Sparsity constraints on basis or
activation matrices are included by adding a weighted sum of constraint functions to the least squares
reconstruction error. However, the corresponding Lagrange multipliers are computed by the network
dynamics itself, avoiding empirical tuning or a validation process. It is proved that local solutions of the
NMF optimization problem correspond to as many stable steady-state points of the network dynamics.
The validity of the proposed approach is verified through several simulation examples concerning both
synthetic and real-world datasets for feature extraction and clustering applications.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The idea of using analogue circuits to solve mathematical
programming problems can be traced back to the works of Pyne
[1] and Dennis [2]. A canonical nonlinear programming circuit was
proposed by Chua and Lin [3], later extended by Wilson [4].
Kennedy and Chua [5] recast the canonical circuit in a neural
network framework and proved the stability. All the networks in
[3–5] are based on the penalty function method, which gives exact
solutions only if the penalty parameter tends to infinity, a condi-
tion impossible to meet in practice. To avoid the penalty functions,
Zhang and Constantinides [6] proposed a Lagrangian approach to
solve quadratic programming (QP) problems with equality con-
straints. The method can be extended to problems including both
equality and inequality constraints converting inequalities into
equalities by introducing slack variables. In addition, bound con-
straints on the variables, often arising in practical problems, can be
treated in the same way at the expense of a huge number of
variables. In the last decades several Lagrange neural networks
have been proposed to solve specific optimization problems,
handling both equality and inequality constraints as well as
bounds on the variables [7–23].

Among the optimization problems of main interest in the
context of machine learning and data, analysis there is nonnega-
tive matrix factorization (NMF) [24]. The problem consists in
finding reduced rank nonnegative factors to approximate a given
nonnegative data matrix. This factorization can be interpreted as a
representation of data using nonnegative basis vectors and non-
negative activation vectors. Like PCA, it can be used to accomplish
the goal of reducing the number of variables required for data
representation, with the additional constraint of non-negativity to
enforce an additive, not subtractive, combination of parts. The idea
of NMF can be traced back to Paatero and Tapper [25]. However,
they were the seminal papers of Lee and Seung [26,27] which
attracted the interest of many researchers. Applications of NMF
have been proposed in diverse fields, e.g. text mining [28],
document clustering [29,30], image reconstruction [31], human
action recognition [32], discovering muscle synergies [33], EEG
classification [34] and music transcription [35,36]. The relation
between NMF and some clustering techniques has been proven
[37,38], and several extensions and variants have been proposed in
the literature [39–42].

Different algorithms can be used to solve the NMF problem. In
particular, the most known are the multiplicative rules [26,27,42],
and projected alternating least squares (ALS) algorithms [39]. With
respect to other dimensionality reduction methods, probably the
most intriguing feature of NMF is the capacity of finding the
underlying parts-based structure of complex data. However, there
is no explicit guarantee in the method to support this property,
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which can be enforced introducing sparseness constraints as
proposed by Hoyer [43] and Pascual-Montano et al. [44]. Due to
the nonnegativity constraints, sparsity is strictly related to ortho-
gonality among the basis vectors. Vice versa, imposing sparsity on
the activation vectors, we can enforce an holistic representation of
the data.

In the present paper we propose a neural network solver for
the approximate NMF problem. It is a Lagrange programming
neural network, using a projection operator to implement the
nonnegativity constraints. A similar network has been proposed by
the authors to solve convex optimization problems [14,17]. In this
paper it is shown how this approach can properly work in a non-
convex problem as the approximate NMF.

The rest of this paper is organized as follows. In Section 2, the
NMF optimization problem is formulated. In Section 3, the pro-
posed neural network is introduced and illustrated. Section 4
we investigate the network’s dynamic behaviour. Section 5 pre-
sents the simulation results. Finally, some comments conclude the
paper.

2. NMF optimization problem

Let ℜþ denote the set of nonnegative real numbers. Given a
nonnegative matrix VAℜm�n

þ and an integer pomin(m,n), the
NMF problem consists in computing a reduced rank approxima-
tion of V given by the product WH of nonnegative matrices
WAℜm�p

þ and HAℜp�n
þ . This problem can be formulated as the

minimization of the objective function J(W,H)¼ ∣∣WH�V∣∣2 with
non-negativity constraints on W and H. The NMF optimization
problem is not convex, so it admits multiple local minima and the
solution found by iterative algorithms depends on initialization.
Moreover the problem is characterized by an intrinsic invariance,
since the product WH is unchanged by replacing matrices W and
H by the nonnegative matrices WD and D�1H, where D is any
invertible nonnegative matrix; this implies the non-existence of
isolated local minima of the objective function.

The problem formulation is often extended to include auxiliary
constraints on W and/or H, in order to avoid the invariance
problem, limit the number of local minima and enforce some
desired characteristics of the solution. Sparsity of W is sometimes
required to enforce a parts-based decomposition [24,39,43,44];
sparsity of H is required to improve the performance in clustering
applications. It has been shown that imposing L1 normalization on
rows or columns is a straightforward way to enforce sparsity; L1
normalization of nonnegative vectors simply requires a constraint
on the sum of elements. In this paper we take into account NMF
with the following additional constraints: L1 normalization of
columns of W; L1 normalization of rows of H.

The NMF optimization problem, with L1 normalization of W
columns, can be stated as follows:

minimize

JðW;HÞ ¼ jjWH�Vjj2 ð1aÞ

such that

WZ0 ð1bÞ

HZ0 ð1cÞ

jjwjjj1 ¼ ∑
m

i ¼ 1
wij ¼ 1; j¼ 1;…; p ð1dÞ

where wjAℜm
þ denotes the jth column of W.

The Lagrangian function corresponding to problem (1) is [45]:

L¼ JðW;HÞþ ∑
p

j ¼ 1
αj ∑

m

i ¼ 1
wij�1

 !
� ∑

m

i ¼ 1
∑
p

j ¼ 1
λijwij� ∑

p

j ¼ 1
∑
n

k ¼ 1
μjkhjk

ð2Þ
where λij and μjk are the Lagrange multipliers corresponding to
inequality constraints (1b) and (1c), respectively; αj is the Lagrange
multiplier of the jth equality constraint (1d).

The Karush–Khun–Tucker (KKT) first order conditions for the
existence of a local minimizer of problem (1) are the following
[45]:

∂L
∂wij

¼ ∂J
∂wij

þαj�λij ¼ 0 ð3aÞ

∂L
∂hjk

¼ ∂J
∂hjk

�μjk ¼ 0 ð3bÞ

λijZ0 ð3cÞ

μjkZ0 ð3dÞ

λijwij ¼ 0 ð3eÞ

μjkhjk ¼ 0 ð3fÞ

wijZ0 ð3gÞ

hjkZ0 ð3hÞ

∑
m

i ¼ 1
wij�1¼ 0 ð3iÞ

In relations (3) we assume i¼1,…,m, j¼1,…,p, and k¼1,…, n.
Since the objective function (1a) is non-convex, KKT conditions

(3) are only necessary [45].

3. Neural network model

For a convex constrained optimization problem, Lagrangian
duality can be used to obtain the global solution [6,45]. The basic
idea is to find the saddle point of the Lagrangian function, which is
maximized with respect to the Lagrange multipliers (dual vari-
ables) and minimized with respect to the primal variables. Here,
we propose the same strategy to find a (local) solution of non-
convex problem (1). To limit the number of variables, we adopt a
partial dual approach introducing the following reduced Lagran-
gian function:

LðW;H;αÞ ¼ JðW;HÞþ ∑
p

j ¼ 1
αj ∑

m

i ¼ 1
wij�1

 !
ð4Þ

where α¼[α1 … αp]T is the vector of Lagrange multipliers (dual
variables) corresponding to the equality constraints (1d). Constraints
(1b) and (1c) are not included in (4), avoiding p(mþn) additional dual
variables. To fulfill constraints (1b) and (1c), avoiding the drawbacks
of the penalty function approach, we introduce the auxiliary variables
ωij,ηijAℜ, being wij¼P(ωij), hjk¼P(ηjk) and P(.) is the piecewise linear
function defined as follows (Fig. 1):

PðxÞ ¼ 0 if xo0
x if xZ0

(
ð5Þ

Function (5) is a projection operator: the auxiliary variables can
vary in ℜ according to the gradient of the Lagrangian function (4)
while the true variables wij, hjk are confined in ℜþ .

To find a saddle point of the Lagrangian function (4) a dynam-
ical system can be used such that, along a trajectory, function L is
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