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a b s t r a c t

Probabilistic semi-supervised discriminant analysis (PSDA) is a recently proposed semi-supervised
dimensionality reduction approach. It quantifies class membership probability to each unlabeled sample
by using a well-designed soft assignment technique. Then discriminant analysis is performed over both
labeled and unlabeled data which bears an analogy to the Fisher criterion. However, PSDA mainly focuses
on discriminative information hidden in unlabeled data and ignores the local geometric information
which is critical to reveal the intrinsic distribution of data points, especially for face image data. In this
paper, we develop a graph-based semi-supervised learning method based on PSDA, termed as graph-
embedded probability-based semi-supervised discriminant analysis (GPSDA) for dimensionality reduc-
tion. By introducing a similarity measurement of fuzzy sets to investigate the inexact class information of
unlabeled data, an adjacency graph is modeled based on both neighborhood structure and category
information, which is more relevant to classification compared with the unsupervised graph constructed
in traditional graph-based semi-supervised dimensionality reduction technique. Since more information
is learnt from unlabeled data, GPSDA is expected to enhance performance in classification task. We
present experimental evidence on face and facial expression recognition suggesting that our algorithm is
able to use unlabeled data effectively.

& 2014 Published by Elsevier B.V.

1. Introduction

With the fast growing amounts of high-dimensional data
which may cause the “curse of dimensionality” as well as compu-
tational complexity, dimensionality reduction becomes a crucial
step in many practical machine learning tasks. The objective of
dimensionality reduction is to find a low-dimensional feature
representation for data compression and enhance discrimination
for subspace classification. Commonly used dimensionality reduc-
tion methods include Principal Component Analysis (PCA) [1] and
Linear Discriminant Analysis (LDA) [2,3]. PCA provides an optimal
linear transformation from the original data space to an orthogo-
nal eigenspace with reduced dimensionality in the sense of least
mean squared reconstruction error. Thus, PCA has little to do with
discriminative features optimal for classification. Unlike PCA
which is unsupervised, LDA is a supervised technique that prior
class information is used to guide the learning procedure. The
purpose of LDA is to find the projection axes on which the data
points have maximum between-class separation and minimum
within-class dispersion. It is widely believed that supervised

learning algorithms generally outperform unsupervised learning
techniques because of the utilization of label information. How-
ever, it is usually difficult to collect sufficient labeled data because
labeling often requires expensive human labor and much time. In
contrast, unlabeled data are relatively much easier to obtain. So
learning with both labeled and unlabeled data, called semi-
supervised learning is becoming an important area in the machine
learning community.

There is an increasing interest in graph-based semi-supervised
learning methods [4–12] recently, which not only consider the label
information, but also utilize a consistency assumption, namely,
nearby points are likely to have the same label in classification
tasks. In general, existing graph-based semi-supervised learning
methods can be divided into transductive learning (e.g. [4–6]) and
inductive learning (e.g. [7–13]). With the purpose of estimating the
labels of the given unlabeled data, transductive learners only work
on the labeled and unlabeled training data, and cannot deal with
unseen (test) data, whereas inductive learners try to induce a
decision function that has a low classification error rate on the
whole sample space, thus can naturally handle unseen data. In this
paper, we focus on inductive learning in the context of classifica-
tion. Cai et al. [7] proposed semi-supervised discriminant analysis
by introducing a smoothness constraint into the objective function
of LDA. This constraint based on graph Laplacian regularization [14]
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aims to keep nearby points to have similar representations in the
low-dimensional feature space. Nie et al. [8] imposed an orthogonal
constraint and formulated a semi-supervised orthogonal discrimi-
nant analysis method for dimensionality reduction. Zhang et al. [9]
employed domain knowledge which specifies whether a pair of
instances belongs to the same class (must-link constraints) or
different classes (cannot-link constraints) to discover the under-
lying structure of data set. Cevikalp et al. [10] utilized the informa-
tion provided by must-link and cannot-link to modify locality
preserving projections (LPP) [15] scheme such that it can better
discover groups within data. Xu et al. [11] proposed an adaptive
regularization method to better depict the interplay between the
labeled and unlabeled data. Zhang et al. [12] first estimated the class
labeled of all the unlabeled data points by solving a constrained
optimization problem. Then the unlabeled data with sufficiently
high confidence are selected to maximize an optimality criterion of
LDA. In addition to these methods, a general semi-supervised
dimensionality reduction framework was proposed in [13], which
takes advantage of labeled data to characterize class structure while
unlabeled data are utilized to capture the intrinsic local geometry.
Many classical dimensionality reduction methods can be unified
into this framework as claimed in [13]. Semi-supervised LDA
(SSLDA) and semi-supervised maximum margin criterion (SSMMC)
[13] are two outcomes by generalizing LDA and maximum margin
criterion (MMC) [16] to this framework respectively.

Most of the aforementioned algorithms cannot promise good
performance when the size of labeled data set is small. This is
resulted from inaccurate class matrix variance estimated by
insufficient labeled training data. Moreover, the class information
of large amount of unlabeled data is ignored in decision making,
which may be helpful to uncover class distribution. Probabilistic
semi-supervised discriminant analysis (PSDA) algorithm is a newly
proposed method presented by Li et al. [17], which utilizes
unlabeled samples to approximate class structure instead of local
geometry. Based on the basic assumption that points lying on the
same structure are likely to have the same label, each unlabeled
sample is quantified class membership degree according to corre-
sponding class reconstruction error. Then unlabeled data points
can be combined with labeled ones to approximate class distribu-
tion. This property can compensate for the drawbacks induced by
limited size of labeled data set and further improves the discri-
minant ability. However, PSDA is suboptimal for classification due
to that it mainly focuses on the discriminative information hidden
in unlabeled data points and ignores the geometric information
which is critical to reveal the intrinsic distribution of data points.

In this paper, following the intuition that naturally occurring face
may be sampled from the data with a probability distribution on a
submanifold of ambient space, a graph-based extension of PSDA,
referred to as graph-embedded probability-based semi-supervised
discriminant analysis (GPSDA), is developed for face and facial
expression recognition. The basic idea of GPSDA is not only explore
the category information of unlabeled data but also preserve the intra-
class and inter-class local information in the processing of dimension-
ality reduction. To this end, we first introduce a similarity measure-
ment to investigate the inexact class information of unlabeled data.
With this characterization, a graph is built with the guide of category
information, which is more powerful to discover the intrinsic structure
of data set compared with the graph modeled based merely on local
structure in traditional semi-supervised dimensionality reduction
technique. Finally, we use manifold regularizer for constraining the
consistency similar to [7]. With the complementary geometric infor-
mation learnt from unlabeled data, the decision boundary constructed
by GPSDA precisely match what we expect, bring superior classifica-
tion results when compared with prior work [10–13,17].

The remainder of the paper is organized as follows. Section 2
outlines PSDA. Section 3 details our proposed graph-embedded

probability-based semi-supervised discriminant analysis method.
The experimental results and discussions are presented in Section
4. We conclude the paper in Section 5.

2. Probabilistic semi-supervised discriminant analysis

Different from traditional semi-supervised learning methods
[7,13] which use unlabeled samples to depict manifold structure,
PSDA utilizes unlabeled data points to characterize class distribu-
tion. This property contributes to make PSDA more powerful and
more robust when the amount of labeled data set is insufficient.
Based on the key assumption that points lying on the same
structure are likely to have the same label, PSDA first quantifies
class membership probability to each unlabeled sample by using a
well-designed soft assignment technique. Then discriminant ana-
lysis is carried out over both labeled and unlabeled data which
bears an analogy to the Fisher criterion.

Assume a partially labeled data set X ¼ fxigNi ¼ 1 with N samples,
where xiARD represents a vectorized image. The first l points
XL ¼ ½x1;…; xl� have labels fy1;…; ylgAf1;…;Cg and the remaining
u points XU ¼ ½xlþ1;…; xN � are unlabeled. The kth class has nk

samples, ∑C
k ¼ 1nk ¼ l. The global centroid of the whole data is

defined by: μ¼ ð1=NÞ∑N
j ¼ 1xj. Suppose the data points in XL are

given as fX1;…;XCg, where Xið1r irCÞ describes the data matrix
of the ith class containing observed vectors in its column. Samples
in Xi spread as a low-dimensional linear subspace which is
represented by a basis matrix BiARD�d (d5D) obtained by
retaining the first d columns of the orthogonal basis matrix
Bori
i AℜD�D of the ith class, s.t. ðXi�μieTni ÞðXi�μieTni Þ

T ¼ Bori
i ΛiðBori

i ÞT ,
where μi is the centroid of the ith class, μi ¼ ð1=niÞ∑xj ACi

xj, eni ¼
½1;1;…;1�T ARni .

The crux of PSDA algorithm is to estimate the label information
of unlabeled data. Rather than just assigning the binary is or is not
label to an unlabeled instance, a soft assignment measured by
class reconstruction error is designed. Given an unlabeled point xk,
its d-dimensional projection vector onto the subspace of class i is
zk ¼ BT

i ðxk�μiÞ. The reconstructed vector of xk is represented as
xk ¼ BiB

T
i ðxk�μiÞþμi in original space RD. The error between xk and

xk denotes as εðiÞk ¼ xk�xk . The reconstruction error is utilized to
measure the class membership degree of xk to the ith class:

wki ¼ gðεðiÞk Þ ð1Þ
where gðxÞ is generally a monotonically decreasing function
because the classes that yield smaller reconstruction error of a
given unlabeled sample are likely to have the same label with the
sample and should be given a greater value. In [17], Gaussian
kernel function is applied gðxÞ ¼ expð�ðx2=2s2ÞÞ. Thus, a size of
u� C matrix W is obtained whose rows specify category informa-
tion of unlabeled data. The normalized class membership degree
wki ¼ ðwki=∑C

i ¼ 1wkiÞcan serve as the probability of xk belonging to
class i.

After obtaining the probabilistic distribution matrix W, the
weight matrix SAℜN�C which summarizes the class information
of the whole input data is built:

Sði; jÞ ¼
1 if xiAXL and xiACj

wij if xiAXU

0 otherwise

8><
>: ð2Þ

Obviously, each row sum of S equals to 1, that is
∑C

i ¼ 1sji ¼ 1; j¼ 1;2;…;N.
Considering both labeled and unlabeled data, the global cen-

troid and class centroid are updated by the following formulas:

μ ¼
∑C

i ¼ 1∑
N
j ¼ 1sjixj

∑C
i ¼ 1∑

N
j ¼ 1sji

¼
∑N

j ¼ 1∑
C
i ¼ 1sjixj

∑N
j ¼ 1∑

C
i ¼ 1sji

¼
∑N

j ¼ 1xj
N

¼ μ ð3Þ
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