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a b s t r a c t

Echo state networks (ESNs) are recurrent structures that give rise to an interesting trade-off between
achievable performance and tractability. This is a consequence of the fact that the key element of these
networks – the recurrent intermediate layer known as dynamical reservoir – is not, as a rule, subject to
supervised training, which is restricted to the linear output layer, also termed as readout. This trade-off,
aside from being of theoretical significance, establishes ESNs as most attractive tools for both online and
offline information processing. There are two key aspects to be taken into account in the ESN design:
(i) the unsupervised definition of the synaptic weights of the reservoir and (ii) the definition of the
structure and of the training strategy associated with the readout. This work is concerned with the first of
these aspects: it proposes novel strategies for ESN reservoir design based on the theoretical framework
built by Kohonen's classical works on self-organization – which includes the notions of short-range
positive feedback and lateral inhibition – and also on the related and more recent notion of neural gas. It
is shown, with the aid of a representative set of simulation results, that the proposed methodologies are
capable of leading to significant performance improvements in the context of relevant information
processing tasks – channel equalization and chaotic time series prediction – particularly when the input
data suits well a cluster-based profile.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recurrent neural networks (RNNs) can be safely regarded as
powerful processing structures in view of a number of features:
(i) ability to deal with time context information, (ii) capability of
approximating dynamical systems with arbitrary accuracy [11,33]
and (iii) presence of feedback connections, which leads to the
emergence of a useful dynamical memory of the input signal
history [13]. However, the image of a double-edged sword can be
used as a portrait of RNNs since the aforementioned attractive
characteristics are usually accompanied with well-known draw-
backs associated with conventional training strategies, such as
slow convergence and instability.

In 2001, a new approach has brought an interesting alternative
to circumvent the RNN training difficulties. The proposed model,
known as echo state network (ESN) [15], is characterized by the
use of an RNN, called the dynamical reservoir, whose parameters –
input and recurrent synaptic weights – are randomly created, and
of an adaptive readout, which produces the network outputs by
means of linear combinations of the reservoir activations. By
keeping the recurrent layer parameters fixed, the network training

consists in determining the optimum coefficients of the linear
combiner at the output, which essentially amounts to the solution
of a linear regression problem. Hence, not only do ESNs explore, to
a certain extent, the advantages of a recurrent structure, but also
introduce a significant simplification in the RNN training process
[24].

ESNs, along with the so-called liquid state machines (LSMs),
proposed by Maass et al. [25], established a new research area
known as reservoir computing (RC) [24,40], which is rapidly
attracting interest especially because of the promising results such
models have achieved in different applications, such as system
identification [16] and nonlinear signal processing [17,5]. Addi-
tionally, there are potential analogies between RC principles and
structural/dynamical properties of mammalian brains [44].

The twofold architecture of ESNs has promoted the develop-
ment of distinct research lines. The first line focuses on the ESN
output layer and aims at proposing alternative readout structures
that are capable of improving the accuracy in the approximation of
the target signal. For instance, Boccato et al. [6] replaced the linear
combiner with the structure of a Volterra filter, along with a
compression stage based on Principal Component Analysis (PCA),
with the purpose of exploiting the higher-order statistics of
the signals generated by the reservoir, and achieved significant
performance improvements in the context of signal process-
ing tasks [7]. Another relevant contribution was brought by
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Butcher et al. [9], which proposed the use of extreme learning
machines (ELMs) at the ESN readout.

On the other hand, the second research stream is devoted to
studying the effects of the reservoir characteristics on the network
performance and to developing alternative methods for the design
and the adaptation of the recurrent layer. In this context, the
dilemma is to create a sufficiently rich repertoire of dynamical
behaviors without violating the spirit of simplicity inherent to the
ESNs. The original idea of creating a random sparse weight matrix
meets the requirements of low computational complexity and allows
the formation of an internal memory of the recent input history [15].
However, it seems intuitive that an especially tailored reservoir
should lead to a better performance than a general random proce-
dure. Therefore, recent works, among which we highlight [38,35,8],
have investigated the possibility of incorporating relevant informa-
tion with respect to the input signal into the reservoir design process.

In this work, we propose a novel unsupervised method for
designing ESN reservoirs characterized by (i) the introduction of
short-range positive lateral feedback between neighboring units, as
well as inhibitory stimuli between distant units, and (ii) the self-
organization of the input weights. Inspired by the seminal work of
Kohonen [19], the recurrent connections are interpreted as promoting
lateral interactions between the reservoir neurons and can bemodeled
according to the profile of the so-called Mexican hat function so that
each activated neuron stimulates its neighboring units and, at the
same time, inhibits the activation of more distant units. This idea
encourages the formation of groups of neurons, or activity clusters,
specialized in responding to different classes of input patterns.

In this context, self-organizing the input weights of the reservoir
units emerges as a natural complementary approach that contributes
to the stable formation of such activity clusters. Hence, the activation
of the reservoir neurons may contain relevant information about the
input signal, while, implicitly, a certain degree of diversity is main-
tained due to the existence of different activity clusters.

With respect to the adaptation of the input weights, two
different approaches are considered here: self-organizing maps
(SOMs) [20] and the neural gas network (NG) [27,10]. Interestingly,
in the latter case, since the NG automatically creates and updates a
connectivity matrix, we can use it as the weight matrix of the
reservoir by applying a proper scaling factor.

All these possibilities are studied in the context of two relevant
information processing tasks – channel equalization and chaotic time
series prediction – which have been selected due to their different
characters regarding the existence of clustered input patterns: in the
former task, the input patterns are distributed in separate clusters,
whereas in the latter this behavior does not usually occur. The
proposed method is compared with usual strategies for the reservoir
design, and we also analyze it from the perspective of the formation
of activity clusters within the reservoir.

This paper is organized as follows: Section 2 describes the main
aspects of echo state networks, along with a brief review of different
reservoir design methods. The main elements introduced by Koho-
nen [19] that motivated this work, as well as the fundamental ideas
of the proposed method, are presented in Section 3. Then, Sections
4 and 5 bring the description of the self-organizing methods and the
problems – channel equalization and chaotic time series prediction –

considered in this work, respectively. Next, Section 6 discusses the
results obtained with the ESNs, outlining the potential advantages
of the proposed method. Finally, concluding remarks and future
perspectives are presented in Section 7.

2. Echo state networks

The basic ESN architecture, depicted in Fig. 1, consists of a
recurrent layer of nonlinear processing elements (NPEs) followed

by a feedforward structure, usually a linear combiner, which is
responsible for combining the signals generated by the reservoir
NPEs to produce the network outputs. The first part of the
architecture, commonly named as dynamical reservoir, engenders
a repertoire of dynamical behaviors, which are influenced by the
current network inputs and by past activations of the NPEs that
are fed back into the reservoir.

Consider a generic discrete-time ESN with K input units,
N reservoir units and L outputs. The input stimuli, represented by
vector uðnÞ ¼ ½u1ðnÞ … uK ðnÞ�T , are linearly combined according to the
weights specified in matrix WinARN�K and transmitted to the
dynamical reservoir, which is composed of fully connected nonlinear
neurons whose activations, given by xðnÞ ¼ ½x1ðnÞ … xNðnÞ�T , repre-
sent the network states and are updated as follows [15]:

xðnþ1Þ ¼ fðWinuðnþ1ÞþWxðnÞÞ; ð1Þ

where WARN�N contains the weights of the recurrent connections
within the reservoir and fð�Þ ¼ ðf 1ð�Þ;…; f Nð�ÞÞ denotes the activation
functions of the internal units.

Then, the network outputs, represented by the vector
yðnÞ ¼ ½y1ðnÞ … yLðnÞ�T , are determined according to the following
expression [15]:

yðnþ1Þ ¼Woutxðnþ1Þ; ð2Þ

where WoutARL�N corresponds to the output weight matrix.
The essential idea underlying the ESN approach is that the

parameters of the recurrent layer can be set in advance and
independent of the network adaptation, which means that only
the coefficients of the readout (elements of matrix Wout) are
effectively adjusted with the aid of a reference signal. Moreover,
due to the linear character of the output layer, the optimum
readout parameters can be determined in the least-squares sense
by means of linear regression methods [15].

This noticeable simplification in the training process can be
brought to fruition due to the so-called echo state property (ESP)
[15], which ensures that the activation of each neuron within the
reservoir becomes a nonlinear transformation of the recent history
of the input signal (hence the term echo) as long as the reservoir
weight matrix W meets specific spectral requirements. A sufficient
condition for the existence of echo states is expressed in terms of
the largest singular value of the internal weight matrix W, which
must be smaller than one1 [15]. Recently, Yuldiz et al. [45]
presented a different sufficient condition for the existence of echo
states that evokes Schur's definition of matrix stability.

Nevertheless, apart from those boundary conditions, a funda-
mental issue still needs to be addressed: the design of the

Fig. 1. Basic architecture of an ESN. Win and W specify the synaptic weights of the
input and recurrent connections, respectively. Only the output weights (Wout) are
adapted according to the information brought by a target signal.

1 This condition has been demonstrated considering an ESN without output
feedback and with tanhð�Þ as the activation function of the neurons at the reservoir.
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