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a b s t r a c t

Linear Discriminant Analysis (LDA) is one of the most popular methods for dimension reduction.
However, it suffers from class separation problem for C-class when the reduced dimensionality is less
than C�1. To cope with this problem, we propose a subset improving method in this paper. In the
method, the subspaces are found for each subset rather than that for the entire data set. To partition the
entire data set into subsets, a cost matrix is first estimated from the training set with the pre-learned
classifier, then the graph cut method is adopted to minimize the cost between each subset. We use LDA
to find subspaces for each subset. Experimental results based on different applications demonstrate both
the generality and effectiveness of the proposed method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extracting good features is crucial for pattern recognition tasks,
especially when facing the high-dimensional data. Discriminative
dimensionality-reduction methods are developed to resolve this
problem. These methods not only help to alleviate the problem of
dimension curse [1] but also help to improve the efficiency and
accuracy of the classification algorithms. One of the most popular
discriminative dimensionality reduction methods is the Linear Dis-
criminant Analysis (LDA), which is proposed by Fisher [2] for solving
binary class problems. It is further extended to multi-class cases by
Rao [3]. In general, LDA aims to find a subspace that minimizes
the within-class scatter and maximizes the between-class scatter
simultaneously.

LDA has been successfully applied to many applications such as
handwritten character recognition, face recognition, image retrieval
and so on [4–7]. However, for a multi-class problem, it is proved to be
not optimal. The main reason is that LDA tends to merge the classes
located closely if the final dimensionality d is less than C�1, where C
is the number of classes. Such an example can be found in Fig. 1,
where LDA fails in a two-dimensional data set with four classes. In the
last decade, researchers tried to tackle this problem in different ways.
Lotlikar and Kothari [8] proposed a combination of a fractional step
and a weighting function, where the weights of the pairs that will be
potentially merged are increased. Loog et al. [9] introduced a different
weighting function approximating a pairwise Bayes function. The

function assigns a large value to the closely located pairs according
to the Bayes rules. Recently, Bian and Tao [10] presented amethod that
aims to maximize the minimum pairwise distance. In this way, the
distance between the classes that might be merged is maximized.
However, these methods lessen the separation problem of LDA to
some extent, there is still room for improvement.

It is well known that it is notoriously difficult to develop a Bayes
optimal criterion for general multi-class dimension reduction. But in
some special cases, progresses have been made. Geisser [11] gave the
functional expression of Bayes error for C homoscedastic classes with
equal priors Gaussian distribution. Schervish [12] solved it for two-
dimensional data from three classes. Hamsici and Martinez [13]
proved the projections having the same order of projected means in
1D subspace actually form a convex set. Hence, the problem could be
solved by conditional convex optimization algorithms. To find 2D or
higher dimensional subspaces, they developed an algorithm that
selects a set of 1D subspaces by orthogonal projection. However, it
should be noted that it might be necessary to solve C!=2 convex
problems for each projection. With the growing class number C, the
computational cost increases sharply.

From Fig. 1, it is obvious that if the whole set is first partitioned
into two subsets, then LDA is applied on each subset individually,
the problem of LDA will be greatly relieved. Therefore, we consider
that LDA could be more efficient handling a series of smaller
C0-class problems instead of the C-class problem, where C 0oC. In
this paper, we proposed a new method, namely Subset improving
LDA (S-LDA), for addressing the separation problem of LDA for
multi-class from a new perspective. Different from the aforemen-
tioned methods, S-LDA finds subspaces for each subset instead of
the whole set. To get the best partition of the whole set, we first
make use of the relation between each individual class for the
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specific classifier, then adopt the graph cut algorithm to solve this
optimization problem. Actually, the subset improving method
could also be applied to other dimension reduction methods to
improve their performances. Experiments on synthetic data, two
data sets from UCI machine learning repository and MNIST, a real
handwriting digital character data set, demonstrate the effective-
ness of the proposed method.

The rest of the paper is organized as follows. Section 2 reviews
the details of LDA, and Section 3 presents the subset improving
LDA, then experiments are shown in Section 4. Finally, we
conclude the proposed method in Section 5.

2. Preliminary

For C-class problem, LDA aims to seek a set of optimal vectors,
denoted by W ¼ ½w1;w2;…;wl�, such that the Fisher criterion

JðWÞ ¼ tr
WTSbW
WTSwW

 !
ð1Þ

is maximized. Where the within scatter matrix Sw and between
scatter matrix Sb is defined below:

Sw ¼ ∑
C

i ¼ 1
∑
ni

j ¼ 1
piðxij�miÞðxij�miÞT ð2Þ

Sb ¼ ∑
C

i ¼ 1
piðmi�mÞðmi�mÞT ð3Þ

where pi is the prior probability of the ith class, mi is the centroid
of class i, xij is the jth sample of class i and ni is the number of
training samples from class i, m is the centroid of the global
centroid. The object of LDA is to learn a transformation WARd�d0

to minimize the within-class variance and as well as maximize the
between-class variance. The solution to this problem is obtained
by an eigenvalue decomposition of S�1

w Sb and take the eigenvec-
tors corresponding to the d0 largest eigenvalues.

3. Subset improving Linear Discriminant Analysis

Fig. 1 illustrates the separation problem of LDA. Researchers
addressed on this problem from the criterion viewpoint in the last
decade. However, we consider this problem from a different
perspective. In this section, the details of the subset improving
LDA method will be discussed.

3.1. Partition method

The methods for dividing the samples into groups are known as
clustering analysis, which have been well studied. However, it is
not suitable to adopt those clustering methods in our scheme
directly because we need the samples in the same class to be in
the same group. Therefore, we propose a new partition method to
meet the requirement.

We consider the partition of C-class problem in the following way.
For the C-class problem fC1;C2;…;Ccg, when it is divided into M
subsets, it comes to fS1; S2;…; SMg, where fSig ¼ fCSi1 ;CSi2 ;…; CSin g. For
a predefined cost between each pair of classes, the cost of a partition is

Cost ¼∑
i;j
costðSi; SjÞ ð4Þ

where costð�Þ is the cost between two subsets, and costðSi; SjÞ ¼
∑mA Si ;nA Sj cmn, where cmn is the predefined cost that separating two
classes into different subset. Thus the best partition of the classes is
equal to minimizing Eq. (4).

With the above definition, it is clear that the cost between each
class would influent the partition result. Thus, the key problem of
partition is how to define the cost between each pair of classes.
We introduce a classifier-specific cost in the following way:

cij ¼
pi-jþpj-i; ia j

0; i¼ j

(
ð5Þ

where pi-j is the probability of the ith class misclassified into the jth
class with a pre-learned classifier, such as Nearest Mean, k-Nearest
Neighbor and so on. In this way, the pair of classes easily misclassified
will be in the same subset to make the final partition reliable.

To get better generalization performance, the cost should be
estimated from a different data set from the training set of the
predefined classifier. In our scheme, the training set is divided into
two parts: one for training the classifier, the other for estimating
the misclassification probabilities between each class. Cross-
validation is used to make the probabilities more precise. Then
the cost matrix is obtained:

E¼

0 c12 … c1c
c21 0 … c2c
⋮ ⋮ ⋱ ⋮
cc1 cc2 … 0

2
6664

3
7775 ð6Þ

where the element cij is the cost that separating the ith class and
jth class into different subsets. From Eq. (5), it is clear that cij ¼ cji,
which makes the cost matrix E symmetric.

3.2. Optimization method

To solve the optimization problem based on the above notifica-
tions, we employ graph cut methods which guarantee a globally
optimal solution for a wide family of energy functions [14]. Let
G¼ ðV ; EÞ be an undirect graph with vertex set V ¼ fv1; v2;…; vng,
the vertices vi are the class indicator of class i and the weight wij

between vertices vi and vj is the cost cij in our cost matrix E.
Actually, in the cost matrix E, for cijZ0 and cij ¼ cji, it meets the
requirements of an undirect graph. That is the reason we can
directly use graph cut methods to solve our problem.

Among the graph cut algorithms, Mini-Cut [15], Normalized
Cut [16] and Ratio Cut [17] all aim to find a partition that
minimizes the similarity between subsets according to weight
matrix W, this is exactly what we need. However, Mini-Cut favors
cutting small sets of isolated nodes in the graph, Ratio Cut
performs slowly, we finally choose Normalized Cut to serve in
our method. The partition method is summarized in the following
Algorithm.
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Fig. 1. An illustration in which LDA fails.
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