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a b s t r a c t

A population density approach is presented to simulate the network activity of Morris–Lecar (ML)
neurons. The network is composed of identical excitatory and inhibitory ML neurons. Each neuron
randomly receives excitatory and inhibitory connections from other neurons in the network and an
excitatory external input which is described by an independent Poisson process from neurons outside the
network. We solve the evolution equation for the population density approach numerically. The results
were compared against conventional computation for groups of individual neurons in a few example
networks. We found that when the neuronal network comprises a large number of identical excitatory
ML neurons that are sparsely connected, the population density approach gives a closer approximation to
the network activity. We also demonstrated that the population density approach using the ML neuron
model can be used to simulate the activities of type I and type II neurons (integrators and resonators) in
a network of sparsely connected inhibitory and excitatory neurons that was not possible using the
integrate-and-fire neuron model.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Previous studies of somatosensory, visual cortex [1,2] and pools
of motor neurons [3] showed that in many areas of the brain,
neurons are organized in populations of units with similar proper-
ties. Therefore it is convenient to describe the mean activity of the
neuronal population rather than the spiking of individual neurons.
The population density approach overcomes the limitation imposed
by the large computation time required to compute simulations
of a network of neurons when the number of neurons becomes
very large. The computation time for population density approach is
dependent on the number of interacting populations rather than the
number of neurons [4].

The population density approach has been used to study the
network behavior that is composed of a large number of identical
integrate-and-fire neurons which have the similar biophysical proper-
ties. Most of the previous work focused on one-dimensional popula-
tion density approach for the leaky integrate-and-fire (LIF) model [5]
and the integrate-and-fire conductance based model [6–8]. These
were extended to several studies of two-dimensional population

density approach for the integrate-and-fire-or-burst (IFB) model
[4,9–11]. In the limit of small voltage jump, the population density
approach can be reduced to Fokker–Planck (diffusion) approxima-
tion to analyze the dynamics of the distribution of neuron potentials
[12–18]. In order to describe the neuron dynamics precisely, a prob-
ability density approach that takes into consideration the effects
of slow ionic currents was proposed by Chizhov et al. [19]. They
simulated the activity of recurrent inhibitory neuron network to
constant current step input.

The integrate-and-fire (IF) neuron model is well known as a
simple and efficient spiking neuron model for simulating large-
scale neuronal networks. However, due to its simplicity, it has
poor biological plausibility and cannot produce many neuro-
computational features of real neurons [20]. Conversely, if the
neuronal behavior needs to be studied and investigated in detail,
Hudgkin–Huxley (HH) model is the most important model that
can exhibit many neuronal computational properties. Despite the
HH model being biophysically meaningful, the computation is very
time consuming.

The Morris–Lecar (ML) model is one of the biophysically
meaningful models that can reproduce integrator or resonator
(each is referred to as type I and type II neurons in the following
paragraphs) depending on the parameter of voltage dependent
potassium current [21] while the IF model is an integrator.
Integrators exhibit saddle-node bifurcation when it transits between
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a rest state and repetitive firing state. In contrast, resonators
exhibit Andronov–Hopf bifurcation [22]. Many cortical neurons
are integrators while the resonator's behavior has been described
in thalamic [23] and cortical region [24,25]. However, when
simulating a huge number of interconnected spiking neurons,
the ML model, being more complex than the IF neuron model,
requires a longer computation time. Thus, having a method that is
not only computationally efficient and but also biophysically
meaningful is an important goal in computational neuroscience.

In the present paper, the population density approach is used
to model the network that is comprised of a large number of
identical Morris–Lecar (ML) neurons. With minimal biophysical
characteristics of ML neurons, action potential events can be
generated in response to synaptic perturbations [26–29]. Each
identical ML neuron in the network is randomly connected
and each synapse receives an excitatory external input which
is described by the independent Poisson process [12–14,30,31].
Type I and type II neurons are also simulated in a network with
sparsely connected excitatory and inhibitory neurons.

The paper is organized as follows. The conductance-based
Morris–Lecar (ML) neuron model is described in Section 2.
In Section 3, we introduce the population density approach for
the ML model and derive the corresponding population density
equations. The numerical algorithm for solving the population
density equation is presented in Section 3.1. We demonstrate the
results of a single uncoupled population of Type II neurons in
Section 4. The effects of the number of connections on the network
behavior is investigated and discussed in Section 5. The simula-
tions of type I and type II neurons are presented in Section 6.
In Section 7, we show the comparison of computation time
between the population density approach and the direct simula-
tion of a network of ML neurons. New implications and advances
in the study of neural systems are stated in Section 8. Section 9 is
the conclusion of this paper.

2. The conductance-based Morris–Lecar neuron model

A network of interconnected excitatory population and inhibi-
tory population is shown in Fig. 1. There are Nexc and Ninh identical
Morris–Lecar (ML) neurons in the excitatory and the inhibitory
populations respectively. Each population randomly receives qexc
excitatory connections and qinh inhibitory connections from other
neurons inside the network. It also receives qext external excitatory
inputs with rate vext from neurons outside the network. The total
effect of the external network is denoted as an external Poisson
input. External spikes are statistically independent and can be well
approximated by a Poisson distribution [12,13].

The set of differential equations that governs the dynamics of
the membrane potential for neuron i (i¼ 1;2;3;…;NexcþNinh) are
written as follows [26]:

C
dVi

dt
¼ � Iion;iþ Isyn;i ð2:1Þ

dWi

dt
¼φ

ðW1ðViÞ�WiÞ
τRðViÞ

ð2:2Þ

where

Iion;i ¼ ICa;iþ IK ;iþ IL;i

¼ gCam1ðViÞðVi�ECaÞþgKWiðVi�EK ÞþgLðVi�ELÞ ð2:3Þ

m1ðViÞ ¼ 0:5½1þ tanh fðVi�V1Þ=V2g� ð2:4Þ

W1ðViÞ ¼ 0:5½1þ tanh fðVi�V3Þ=V4g� ð2:5Þ

τRðViÞ ¼
1

cosh fðVi�V3Þ=ð2V4Þg
ð2:6Þ

Here, V is the membrane potential measured in units of mV and W
represents the slow recovery variable of the action of the potas-
sium current. There are two kinds of source currents to each
neuron, Iion;i and Isyn;i. Iion;i is the total ionic current that consists of
a calcium current, ICa;i, a potassium current, Ik,i and a leakage
current, IL,i. C is the capacitance of the membrane. The maximum
conductance for the ion and the leakage channels are denoted by
gCa, gK and gL whereas ECa, EK and EL represent the reversal
potentials for the ion and the leakage channels. The gate variable
W for the potassium channel tends to the saturation value W1ðViÞ
with relaxation time ðτRðViÞ=ϕÞ. Fast changes of the calcium
current take the gate variable mi as the saturation value m1ðViÞ.

When the pre-synaptic neuron j ðj¼ 1;2;3;…; qextþqexcþqinhÞ
emits a spike at time t, the potential of the postsynaptic neuron i is
increased or decreased by postsynaptic potential (PSP) amplitude
Jij. For simplicity, we assume that Jij ¼ Jexc for excitatory synapses
and Jij ¼ Jinh for inhibitory synapses. The synaptic current of the ith
neuron is described as follows:

RIsyn;i ¼ τsyn∑
j
Jij∑

k
δðt�tkj Þ ð2:7Þ

where τsyn ¼ RC is the synaptic time constant and tkj is the emission
time of the kth spike at neuron j. When Vi crosses the threshold
value Vth, neuron i emits a spike.

3. The population density approach

A population density approach is introduced to represent the
membrane behavior of a large number of identical ML neurons as
described in the previous section [6,10,11],

ρðv;w; tÞ dv dw¼ PrfVðtÞAðv; vþdvÞ and WðtÞAðw;wþdwÞg
ð3:1Þ

for vA ðVmin;VmaxÞ and wAð0; 1Þ. The evolution equation for the
probability of finding membrane potential of randomly chosen
neuron in population a¼ exc; inh at v over all possible states at
time t is based on conservation of probability:

∂
∂t
ρðv;w; tÞ ¼ �∇U J

!ðv;w; tÞ ð3:2Þ

where ∇¼ êvð∂=∂vÞþ êwð∂=∂wÞ and J
!ðv;w; tÞ is the total probabil-

ity flux cross v and w at time t. The total probability flux consists of
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Fig. 1. Schematic diagram of the network architecture. The network is composed of
a population of excitatory neurons and a population of inhibitory neurons that
interconnect with each other. Each population receives qext excitatory external
input from neurons outside the network with rate νext . qexc and qinh are the number
of excitatory and inhibitory connections from neurons inside the network.
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