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1. Introduction

It is well known that the existence of anti-periodic solutions plays a
key role in characterizing the behavior of nonlinear differential
equations (see [1-10]). Due to the fact that high-order Hopfield neural
networks have stronger approximation property, faster convergence
rate, greater storage capacity, and higher fault tolerance than lower-
order neural networks, high-order Hopfield neural networks have
been the object of intensive analysis by numerous authors in recent
years. In particular, there have been extensive results on the problem
of the existence and stability of equilibrium points, periodic solutions,
almost periodic solutions and anti-periodic solutions of high-order
Hopfield neural networks (HHNNS)

X0 = ~cOx(O+ 3 a0g050-T50)+ 3 Iil bi(t)g;((t — T ()
j= j=11=

xg(x(t—vm)+1i(h), i=1,2,...,n (1.1
in the literature [11-18,29-33,36-39] and the references therein.
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Impulsive differential equations are mathematical apparatus
for simulation of process and phenomena observed in control
theory, physics, chemistry, population dynamics, biotechnologies,
industrial robotics, economics, etc. [19-21]. Consequently, many
neural networks with impulses have been studied extensively, and
a great deal of literature is focused on the existence and stability of
an equilibrium point [22-25]. In [26-28,40], the authors discussed
the existence and global exponential stability of periodic solution
of a class of neural networks with impulse. In [29], the authors
discussed the existence and global exponential stability of
anti-periodic solution of a class of cellular neural networks with
impulse

Xi(t) = —ci(Oxi () + _zlaij(t)fj(xj(t))+ _Z]bij(t)gj(xj(t—Tij(t)))+ui(t)a
i= i=

t>0, t#£1t,,
Ax;(ty) = Lty Xi(t)),
xi(H) =@, te[-7,0], k=1,2,...,i=1,2,...,n.

(1.2

However, to the best of our knowledge, there are little results
for the existence and stability of anti-periodic solutions of HHNNs
(1.1) with impulses. Moreover, HHNNs can be analog voltage
transmission, and the voltage transmission process is often
an anti-periodic process. Thus, it is worthwhile to continue
the investigation of the existence and stability of anti-periodic
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solutions of HHNNs with impulses

X(0 = — XD+ iag(t)g,»(xj(t— 7))
] =

+ 3 3 bu(Og it — o Xt — D)+ (D,
j=1u=1 (1.3)

£>0, t£t, k=1,2, ...,
Ax;(ty) = Ti(ty, Xi(tr)),
X =@;t), te[-7,0], i=1,2,..,n,

where n is the number of units in a neural network, x,(t) corresponds
to the state vector of the i-th unit at time t, c;(t) > 0 represents the
rate with which the i-th unit will reset its potential to the resting
state in isolation when disconnected from the network and external
inputs, ay(t) and by(t) are the first- and second-order connection
weights of the neural network, z;(t) >0, oj(t) >0 and v;(t) >0
correspond to the transmission delays, I(t) denotes the external
inputs at time ¢, and g; is the activation function of signal transmis-
sion. ¢;, @, by, g, Ty Oy, vy are continuous functions on R, Iy :
R? >R are continuous. 7 = max; ¢ j0,01{7;(t), 0 (t), v(t)} is a positive
constant. Ax;(ty) =x; (t)—xi(ty), xi(t;7)=limy_ o, Xi(tx+h), xi(ty)
=lim p_o_xi(txy+h), i=1,2,..., k= 1,2, ...,1, t, >0 are impulsive
moments satisfying t, <ty and limy_ , ;= 400, charac-
terizes the impulsive function at time ¢ for i-th unit.

The outline of the paper is as follows. In Section 2, some
preliminaries and basic results are established. In Section 3, we
give sufficient conditions for the existence and exponential stabi-
lity of anti-periodic solutions for system (1.3). In Section 4, we
shall give an example to illustrate our results.

2. Preliminaries and basic results

For the sake of convenience, we introduce the following
notations:

¢ = min |¢i(t)], ¢ = max maxct a7 = max |a;(t)l,
! tE[O,w]l il L " o<i<ntel0w l O te[O,a)]‘ iO!

ut = ,max  max [ui(t)],
i<ntel0w]

Ki = exp (/w ci(0) d9> .
0

Throughout this paper, we have the following assumptions:
(Hy)i,j,1=1,2,...,n, keN, there exists w > 0 such that for ueR
Ci(t+m)=ci(t), a;(t+w)g;j(u) = —a;(t)g;(—u),
bi(t+w)gi(wg(w) = — biu(Hg(—wg(—w), Ty(t+w)=7;(0),
O'ij,(ter) = Tijl(t), U,‘j[(t+a)) = Uijl(t)’ Li(t+w) = —Iy(t), t,ueR.
2.1

b} = max |bs(t)],
it te[O,a}]‘ U’( )I

(Hy) For i=1,2,...,n, keN, there exists a positive integer q
such that Ii(k+q) = [, tk+q =tr+w.

(H3) For each je{1,2,...,n}, there are nonnegative constants
L, j=1,2,...,n and v such that |g;(w)| <v, |gj(w)—gi(V)| <Ljlu—
V|, u,veR.

(Hy4) For each ie{1,2,...,
constants d;; > 0 such that

n}, ke N, there exist nonnegative

i (t, ) = Iy (¢, V)| < dylu—v|, te[0,w], u,veR.

(Hs) There is r > 1 such that yr
H=Y]_, {Z?: 1 (/1 +Ki))dik)r] <1

(Hg) There exist constants 7 > 0 and A > 0 such that for all t > 0
n n n
A—c®+ Y lag®ILie + ¥ 12 Ibiii(OI(L+Lyre’™ < —5 < 0.
j=1 j=11=1

Let x=(X1,X2,...,X2)| € R", where T denotes the transposition.
The initial conditions associated with system (1.3) are given by
the function x(t)=q(t),t e[—7,0], where @(t)= (@1, @5 ....0,),
@) : [—7,0]>(0, +00), i=1,2,...,n, are continuous with the
norm ll@ll =sup_, ., - o(ZF_ ;le;(HN'", where r > 1 is a constant.

Definition 2.1. A function x(t) : [—7,a)—>R",a > 0 is said to be a
solution of system (1.3), if

(i) x(t)=@(t) for —7<t<0;
(ii) x(t) satisfies system (1.3) for t > 0;
(iii) x(t) is continuous everywhere except for some t, and left
continuous at t=ty, and the right limit x(t;) exist for
k=1,2,.

Definition 2.2. A solution x(t) of (1.3) is said to be w-anti-periodic
solution of (1.3), if

x(t+w)= —x(t), t#b;
k= 1,2, ey

x((t+w) )= —x(t),

where the smallest positive number @ is called the anti-periodic of
function x(t).

Definition 2.3. Let x(f) = (X1,X2, ..., X;)| € R" be an w-anti-periodic
solution of system (1.3) with initial value @(t)=(¢p,
@z )T, @i(0) 1 [-7,0]5(0, +00), i=1,2,...,n. If there exist
constants A>0 and M>1 such that for every solution
X(t)=(X1,X2,....Xn)" € R" of system (1.3) with any initial value
PO =@, Par 0 Py)' s Pi(0) 1 [—7,0]>(0, +00), i=1,2,...,n

X(t)—Xi(t) <Mllp—ple *, vt>0,i=1,2,..,n,

where llg—@ Il =sup_, _;_omax; < nl@;(S)—@;(s)|. Then x(t) is
said to be globally exponentially stable.

Let PC(R™) = {x=(X1.X2,....Xn)" : R>R" X, 1, .1 € C(ths L],
R, x(t;) and x(t,) exist and x(t, ) =x(t,). k=1,2,...}. Set X=
{x : xe PCR™), x(t+ @) = —X(t),X((t+@)* )= —x(t;}),t e R}. Then X
is a Banach space with the norm Ixll = supg ., ., (X7_ X))

The proof of the following lemma is similar to [29], for the
completeness, we list it as follows.

Lemma 2.1. Let x= (X1, Xa, ...,Xn)" be an w-anti-periodic solution of

system (1.3). Then

t+w n
x= [ Gy {zl a§(9)gxi(5—7§(5)
. 2

+ X

t<ti<t+w

+ ,Zl Zl by (0)g;(x;(s — o ()G (Xi(s — vyji(s)) +1i(s) | ds
] =
Gi(t, t)li(tx, Xi(ty)),

i=1,2,...,n,
(2.2)

where

Gi(t,s) = —exp (/[.Sci(g) d0> /(1+exp (/O.w ci(0) d@)), se(t, t+w),

i=1,2,....n.
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