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a b s t r a c t

This paper is concerned with the problem of stability analysis of recurrent neural networks with time-
varying delay. An augmented Lyapunov–Krasovskii functional containing a triple integral term and
considering more information of activation functions is constructed. Then, Wirtinger-based inequality
and two zero-value free-weighting matrix equations are used to deal with the derivative of the
Lyapunov–Krasovskii functional. Those treatments lead to less conservatism. A numerical example is
given to verify the effectiveness and benefit of the proposed criteria.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, neural networks have been frequently applied
into various fields, such as pattern recognition, signal processing,
associative memories and other scientific areas [1]. As we all
know, a time delay which may cause oscillation even instability
inevitably exists in any system. Therefore, the stability problem of
the delayed neural networks (DNNs) has attracted a lot of atten-
tion [2–4].

The stability criteria of the DNNs can be classified into a delay-
dependent one and a delay-independent one [5,6]. As the former
always has less conservatism, we consider the delay-dependent
stability of recurrent neural networks in this paper. Based on the
Lyapunov theory, there are two key points to reduce the con-
servatism in this field, one is the construction of a suitable
Lyapunov–Krasovskii functional (LKF) and the other is the estima-
tion of its derivative.

For the construction of the LKFs, the simple LKF was firstly
employed to investigate the stability of DNNs, and rich results have
been reported [7–9]. Especially, an efficient delay-dependent stability
criterion was established in [22] for the recurrent neural networks
with a time-varying delay. However, the stability criteria are very

conservative by using the simple LKFs as the delay information is not
fully taken into account in the LKFs. To reduce the conservatism,
some new techniques, such as using the delay-decomposition idea
[11,12], introducing the triple integral terms [18,20], considering
more information of the activation functions [21] and augmenting
the terms in the simple LKFs [19], were employed to construct the
LKFs. The delay–partitioning approach considers the delay informa-
tion by dividing the delay interval into smaller subintervals and
studying the stability based on the subintervals, while, other methods
add more terms considering delay information to the LKF to reduce
the conservatism in a different way. As a result, they are also adopted
to investigate the stability of the recurrent neural networks with a
time-varying delay. For example, a complete quadratic LKF augment-
ing all the terms of the simple LKF and a LKF including two triple
integral terms have been given in [23,24], respectively. Unfortunately,
there are few results combining these terms together to study the
stability of the recurrent neural networks with a time-varying delay.

On the other hand, for the derivative of the LKFs, the works focus
on the estimation of the integral terms. As we know, the free
weighting matrix (FWM) approach [14–16] and the integral
inequality method [10,11] are the most popular methods reported
in the literature. In addition, equivalent conditions can be obtained
for the systems with a time-invariant delay. However, it is not easy
to handle the case of a time-varying delay by using the latter
method. As a result, the convex combination approach [13,17–20]
was presented to avoid this limitation. Combining with the above
techniques, many results have been derived for the recurrent neural
networks with a time-varying delay. For example, delay-dependent
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stability criteria were derived following the FWM approach in [22]
and Jensen's inequality combined with the convex combination
method in [24]. However, as reported in [28], there is a gap
encompassing Jensen's inequality and a new Wirtinger-based
integral inequality was introduced. As the Wirtinger-based integral
inequality contains Jensen's inequality, it can be desired to derive
the improved criteria by using this inequality to estimate the
derivative of the LKFs for the recurrent neural networks with a
time-varying delay.

In this paper, a new augmented LKF containing a triple integral
term and considering more information of the activation functions
is proposed. Less conservative stability conditions are established
by adopting Jensen's inequality with a convex combination
approach, Wirtinger-based integral inequality and two zero-
value FWM equations to estimate the derivative of the constructed
LKF. Finally, a numerical example is given to show the effective-
ness and benefit of the proposed method.

Notations: Throughout this paper, the superscripts T and �1
mean the transpose and the inverse of a matrix, respectively; Rn

denotes the n-dimensional Euclidean space; Rn�m is the set of all
n�m real matrices; P40 ðZ0Þ means that P is a real symmetric
and positive-definite (semi-positive-definite) matrix; diagf⋯g
denotes a block-diagonal matrix; symmetric term in a symmetric
matrix is denoted by ⋆; and SymfXg ¼ XþXT .

2. Problem formulation

Consider the following recurrent neural networks with a time-
varying delay:

_yðtÞ ¼ �AyðtÞþgðWyðt�dðtÞÞþ JÞ ð1Þ

where yð�Þ ¼ ½y1ð�Þ y2ð�Þ ⋯ ynð�Þ�T is the state vector; gð�Þ ¼ ½g1ð�Þ
g2ð�Þ ⋯ gnð�ÞÞ�T represents the neutron activation function;
A¼ diagfa1; a2;…; ang40 with ai40; i¼ 1;2;…;n; W ¼ ½W1 W2

⋯ Wn�T is the connection weight matrix; J ¼ ½J1 J2 ⋯ Jn�T is a
vector representing the bias; and d(t) is a time-varying delay
satisfying

0rdðtÞrh; μ1r _dðtÞrμ2 ð2Þ

where h, μ1 and μ2 are known constants.
The neuron activation function gð�Þ is assumed to be bounded

and satisfies the following condition:

l�i rgiðuÞ�giðvÞ
u�v

r lþi ; uav; i¼ 1;2;…;n ð3Þ

where l�i and lþi are known real constants.
Based on the assumption on the activation function, there

exists an equilibrium point yn for the neural network. Using
transformation xðtÞ ¼ yðtÞ�yn, one can shift the equilibrium point
yn of (1) to the origin and rewrite system (1) as

_xðtÞ ¼ �AxðtÞþ f ðWxðt�dðtÞÞÞ ð4Þ
where f ð�Þ ¼ ½f 1ð�Þ f 2ð�Þ ⋯ f nð�Þ�T and f ðWxð�ÞÞ ¼ gðWxð�Þþynþ JÞ�
gðWynþ JÞ with f ið0Þ ¼ 0. Thus, it follows from (3) and f ið0Þ ¼ 0 that

l�i r f iðs1Þ� f iðs2Þ
s1�s2

r lþi ; s1as2 ð5Þ

l�i r f iðsÞ
s

r lþi ; sa0 ð6Þ

The following lemmas to establish the main results are intro-
duced at first.

Lemma 1 (Jensen's inequality, Gu et al. [25], Sun et al. [26]). For any
matrix RARn�n, R¼ RT 40, scalars βoα, vector ω : ½β;α�↦Rn such

that the integration concerned is well defined, then

ðα�βÞ
Z α

β
ωT ðsÞRωðsÞ dsZ

Z α

β
ωðsÞ ds

 !T

R
Z α

β
ωðsÞ ds

 !
ð7Þ

ðα�βÞ2
2

Z α

β

Z α

s
ωT ðsÞRωðsÞ ds dθ

Z
Z α

β

Z α

s
ωðsÞ ds dθ

 !T

R
Z α

β

Z α

s
ωðsÞ ds dθ

 !
ð8Þ

Lemma 2 (Wirtinger-based inequality, Seuret and Gouaisbaut
[28]). For any matrix RARn�n, R¼ RT 40, any differentiable func-
tion ω in ½a; b�-Rn, the following inequality holds:

Z b

a
_ωT ðsÞR _ωðsÞ dsZ

ςT WT
1RW1þπ2WT

2RW2

h i
ς

b�a
ð9Þ

where ς¼ ½ωT ðbÞ;ωT ðaÞ; R ba ωT ðsÞ=ðb�aÞ ds�T , W1 ¼ ½I � I 0�, W2 ¼ ½I=2
I=2 � I�.

Lemma 3 (Reciprocally convex combination lemma, Park et al.
[27]). Let p1; p2;…; pM : Rm↦R have positive values in an open
subset D of Rm, and αi40;∑M

i ¼ 1αi ¼ 1, then a reciprocally convex
combination of pi over D satisfies

∑
M

i ¼ 1

piðtÞ
αi

Z ∑
M

i ¼ 1
piðtÞþ ∑

M

i ¼ 1
∑
M

j ¼ 1;ja i
qi;jðtÞ

subject to

qi;j : R
M↦R; qi;jðtÞ � qj;iðtÞ;

piðtÞ qi;jðtÞ
qj;iðtÞ pjðtÞ

" #
Z0

( )
ð10Þ

3. Main results

New stability criteria will be derived in this section. At first,
some matrices will be defined for simplicity. eiAR12n�n,
i¼ 1;2;…;12, and e13 ¼ e12 are defined as block entry matrix
(For example, eT3 ¼ ½0 0 I 0 0 0 0 0 0 0 0 0�).

Now, we give a less conservative delay-dependent stability
criterion by introducing a triple integral term in the LKF and using
the new techniques such as the Wirtinger-based inequality and
two zero-value FWM equations.

Theorem 1. For the given scalars h, μ1 and μ2, and diagonal matrices
L� ¼ diagfl�1 ; l�2 ;…; l�n g and Lþ ¼ diagflþ1 ; lþ2 ;…; lþn g, system (4)
with a time-varying delay satisfying (2) and the activation function
satisfying (3) are asymptotically stable if there exist positive-definite
symmetric matrices RAR5n�5n, NAR3n�3n, Q iAR3n�3n; i¼ 1;2,
GAR3n�3n, Q3ARn�n, UAR3n�3n, positive diagonal matrices
ΛiARn�n, ΔiARn�n; i¼ 1;2;3, HiARn�n; i¼ 1;2;…;6, symmetric
matrices PiARn�n; i¼ 1;2, and any matrices SiARn�n; i¼ 1;2,
TAR12n�n satisfying the following LMIs:

Σ1þΩþhΣ2o0 ð11Þ

Σ1þΩþhΣ3o0 ð12Þ

G22 S1
⋆ G22

" #
40 ð13Þ

G22 S2
⋆ G22

" #
40 ð14Þ

Σ4Z0 ð15Þ

Σ5Z0 ð16Þ
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