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a b s t r a c t

This paper gives an extensive empirical evaluation of the innovative nature inspired Gravitational Swarm
Intelligence (GSI) algorithm solving the Graph Coloring Problem (GCP). GSI follows the Swarm
Intelligence problem solving approach, where the spatial position of agents is interpreted as problem
solution and agent motion is determined solely by local information, avoiding any central control system.
To apply GSI to search for solutions of GCP, we map agents to graph's nodes. Agents move as particles in
the gravitational field defined by goal objects corresponding to colors. When the agents fall in the
gravitational well of the color goal, their corresponding nodes are colored by this color. Graph's
connectivity is mapped into a repulsive force between agents corresponding to adjacent nodes. We
discuss the convergence of the algorithm, testing it over an extensive suite of well-known benchmarking
graphs. Comparison of this approach to state-of-the-art approaches in the literature shows improve-
ments in many of the benchmark graphs.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Graph Coloring Problem (GCP) is a classical combinatorial
NP-complete optimization problem [1–5]. The GCP consists in
assigning a color to the nodes of a graph with the restriction that
any pair of adjacent nodes cannot have the same color. The
chromatic number K is the minimum number of colors needed
to color the graph. Classical search algorithms to solve GCP are
deterministic [6–8]. Heuristics and random search allow to obtain
approximations to the optimal solutions in bounded time. Some
recent approaches have applied Ant Colony Optimization (ACO)
[9], Particle Swarm Optimization (PSO) [10], more accurate PSO
approaches like Liu et al. [11], or hybrid PSO like Sun et al. [12],
Simulated Annealing [2] and Reynolds' Boid swarms [13,14]. The
most famous algorithm giving an upper bound of the chromatic
number is the DSATUR, a fast and very accurate algorithm, though
suboptimal because it does not guarantee to return the chromatic
number. Tabu search has been the foundation for several graph
coloring approaches, such as the bare application of [15,16], or
hybridized with other methods like Genetic Algorithms [17] or
Swarm Intelligence methods [18].

We consider a nature inspired strategy to solve this problem
following a Swarm Intelligence (SI) [19] approach. The bee hives [20],

ant colonies [21] and flocking birds [22–24] are examples of such
swarm computational metaphors. In SI models, the collective
behavior emerges from a self-organization process of agents
evolving autonomously according to a set of internal rules specify-
ing its motion patterns and interaction with the environment and
other agents, such that intelligent collective behavior arises from
simple individual behaviors. An important feature of SI is that
there is no leader agent or central control. SI allows a high level of
scalability, dividing the problem to be solved into small problems,
each one solved by an individual agent. This feature also provides
SI with robustness against individual failure.

The proposed algorithm is called Gravitational Swarm Intelli-
gence (GSI) [25], which was further tested in [26]. This paper
progresses beyond [26] adding an exhaustive experimental assess-
ment of the algorithm over more graph instances of benchmarking
classes, while improving the algorithm behavior. In GSI, agents
correspond to graph nodes placed in a torus shaped space. Agents
are attracted to specific space places (color goals) where the
corresponding graph node acquires a color. Such attraction is
modeled as a gravitational field reaching the entire space, thus
the name of GSI. When a GSI agent reaches a color goal, it remains
there unless pushed out by repulsive forces of antagonistic agents.
The repulsive relation between GSI agents is determined by the
topology of the graph to be colored. Nodes connected by an arc
correspond to antagonistic GSI agents exerting mutually repulsive
forces. When an agent is impeded to reach any color goal because
of these repulsive forces, its “discomfort” grows increasing the
force that it can exert on repelling agents to push them out of the
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color goals. This discomfort reaction allows the system to escape
local minima that do not correspond to solutions of the GCP. The SI
dynamics reach a termination stable state when all the agents are
in a color goal and there is no conflict among them.

The rest of the paper is organized as follows: Section 2 presents
the Gravitational Swarm Intelligence algorithm. Section 3 gives
experimental results comparing the GSI algorithm performance
with other methods over well-known benchmarking graphs.
Finally, Section 4 gives some conclusions and lines for future work.

2. Gravitational Swarm Intelligence

Following natural inspiration, such as bird flocks [24], ant
colonies [27] or bees [28], we focus on the gravitational attraction
between objects. We construct a world where agents navigate
through the space attracted by the gravitational pull of specific
objects, the color goals, and may suffer specific repulsion forces,
activated by a friend-or-foe quality of the relation between agents.

Let be G¼ ðN; EÞ a graph with a set of nodes N¼ f1;…;ng and
edges EDN � N. We define the group of GSI agents
B¼ fb1; b2;…; bng, each one corresponding to a graph node navi-
gating inside a square planar toric world. Each GSI agent moves
through this space according to a speed vector v!i. At any time we
know the position of each agent piðtÞ ¼ ðxi; yiÞ where xi and yi are
the cartesian coordinates in the space. When t¼0 we have the
initial position of the agents pið0Þ ¼ ðx0i; y0iÞ. Suppose that we want
to color the graph with K colors, so that C ¼ f1;2;…;Kg is the set of
colors. The chromatic number of the graph Kn is the minimum
number of colors allowing to color the graph. We assign to these
colors, K static points in space, which are the color goals
CG¼ fg1;…; gKg, endowed with a gravitational attraction resulting
in a velocity component v!gc in the computation of the agents'
speed. The attraction force increases with the distance, a trick
against Newton's law to increase convergence speed, affecting all
the agents in the space.

The agents steer toward the nearest goal by the pull of the
gravitational forces. When the Euclidean distance between an
agent and a color goal is below a threshold nearenough, the agent
stops moving and the corresponding node becomes colored. We
denote the set of agents whose position is in the region of the
space near enough to a color neighborhood of the color as
NðgkÞ ¼ fbi s:t: Jpi�gk Jonearenoughg. We formalize the node
color assignment giving value to an agent's color attribute
biANðgkÞ ) ci ¼ k. The initial value of the agent color attribute is
zero or null. Inside the color goal neighborhood there is no further
gravitational attraction. However, there may be a repulsion force
from agents whose nodes are adjacent in the graph G. This
repulsion is only effective between agents inside the same color
goal neighborhood. The repulsive forces experimented by agent bi
inside NðgkÞ are computed as follows: Rðbi; gkÞ ¼∑NðgkÞrepelðbi; bjÞ.
The function repel has value 1 if a pair of GSI agents has an edge
between them, and 0 otherwise. If Rðbi; gkÞ ¼ 0 then the incoming
agent gets the goal color, if not, the agent must wait until the
repulsion forces are zero or be expelled.

We can model the GCP problem solving by GSI as a tuple

F ¼ ðB;CG; f v!ig;K ; f a!i;kg;RÞ ð1Þ

where B is the group of GSI agents, f v!ig the set of agent velocity
vectors at time instant t, K the hypothesized graph's chromatic
number, and f a!i;kg are the attraction forces the color goals exert
on the agents, finally, R denotes the repulsion forces in the
neighborhood of color goals. The cost function defined on the
global system spatial configuration is

f ðB;CGÞ ¼ jfbi s:t: ciAC4Rðbi; gci Þ ¼ 0gj: ð2Þ

This cost function is the number of graph nodes which have a
color assigned suffering no conflict inside the color goal. The
agents outside the neighborhood of any color goal cannot be
evaluated, so they cannot be a part of the problem's solution. The
dimension of the world and the nearenough threshold value allow
tuning the speed of convergence of the algorithm. If the world is
big and the nearenough value is small, the algorithm converges
slowly but monotonically to the solution. On the other hand, if the
world is small and the nearenough value is big, the algorithm's
convergence is faster but jumpy because the algorithm falls in
local minima, needing transitory energy increases to escape them.
The reason for this behavior is that the world is not normalized
and the magnitude of the velocity vector can be bigger than the
color goal spatial influence, so that the agent can walk by a goal
neighborhood without falling in it. The dimension of the world can
be compensated adjusting the velocity vector of the agents, so
reducing the complexity of the algorithm. The dynamics of each
GSI agent in the world is specified by the iteration:

v!iðtþ1Þ ¼
0 ciAC4ðλi ¼ 1Þ;
d � a!i;kn ci =2C;
v!r � ðpr�piÞ ðciACÞ4 ðλi ¼ 0Þ;
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where d is the Euclidean distance between the agent's position pi
and the position of the nearest color goal gkn , a!i;kn represents the
attraction force to approach it, and v!r is a random vector meant to
avoid being stuck in spurious unstable equilibrium, toward a
random position pr . Parameter λi represents the effect of the
degree of Comforti of the GSI agent. When a GSI agent bi reaches
a color goal neighborhood at instant t, its velocity becomes 0.
Every time step that the GSI agent stays in that color goal
neighborhood NðgkÞwithout being disturbed, its Comfort increases,
until reaching a maximum value maxcomfort. When a GSI agent bi
outside NðgkÞ tries to go inside the neighborhood of that color goal,
the repulsion force Rðbi; gkÞ is evaluated. If the repulsion force is
greater than zero then the incoming agent is challenging the
stability of the color assignment in NðgkÞ, and at least one agent
must leave NðgkÞ, which can be the incoming agent itself. The
repulsion force is only applied between connected agents. If the
Comforti values of the challenged agents are bigger than 0, then
their Comfort decreases. If some Comforti reaches 0, then one
connected agent is expelled from the color goal toward a random
position in space pr with velocity v!r . In Eq. (3) when Comforti is
positive then λi ¼ 0. If the repulsion force is greater than zero and
Comforti ¼ 0 of a GSI agent bi inside that goal, then λi ¼ 1 and bi is
expelled from the goal. When all the GSI agents stop, i.e.
8 i; v!i ¼ 0, then f ðB;CGÞ ¼ n, therefore the GCP of assigning K
colors to graph G is solved.

Each color goal has an attraction well spanning the entire
space, therefore the gravitational analogy. But in our approach the
magnitude of the attraction grows proportionally with the Eucli-
dean distance d between the color goal and the GSI agent, and this
force disappears when the agent gets inside a color goal. If
JdJonearenough then we make d¼0, and the agent's velocity
becomes 0, stopping it. The flowchart of Fig. 1 shows the internal
logic guiding the dynamics of each GSI agent. In the flowchart, the
colored agents stay in a Stand By state until the last uncolored
agent is colored. It is not necessary to ask if all the agents have
been colored for each agent, because if all the agents are colored
then the problem is solved and the cost function has value
f ðB;CGÞ ¼ n, and the flow diagram reaches the finish state.

Convergence: The system as a whole reaches an stationary state
only if all the GSI agents' speed becomes zero. Then, the algorithm
has converged to some fixed state where all of them are inside a
color goal and there is no conflict inside the color goal neighbor-
hoods. If the chromatic number is the hypothesized K or lower,
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