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a b s t r a c t

Current Manufacturing Systems challenges due to international economic crisis, market globalization
and e-business trends, incites the development of intelligent systems to support decision making, which
allows managers to concentrate on high-level tasks management while improving decision response and
effectiveness towards manufacturing agility.

This paper presents a novel negotiation mechanism for dynamic scheduling based on social and
collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate
in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term
for several computational techniques, which use ideas and inspiration from the social behaviors of
insects and other biological systems. This work is primarily concerned with negotiation, where multiple
self-interested agents can reach agreement over the exchange of operations on competitive resources.
Experimental analysis was performed in order to validate the influence of negotiation mechanism in the
system performance and the SI technique. Empirical results and statistical evidence illustrate that the
negotiation mechanism influence significantly the overall system performance and the effectiveness of
Artificial Bee Colony for makespan minimization and on the machine occupation maximization.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

For today's manufacturing environments, it is increasingly neces-
sary that a close relationship between manufacturing decision making
and corporate business strategy exists, so that manufacturing decisions
complement and are fully aligned with the strategic objectives of
organizations through agility concerns and requirements. Agility refers
to the manufacturing systems ability to efficiently adapt to market and
environmental changes in an cost-effective ways.

Real world scheduling requirements are related with complex
systems operated in dynamic environments frequently subject to
several kinds of imponderables and perturbations, such as:

� Scheduled orders could take more time than estimated;
� Machines could become unavailable or additional ones may be

introduced;
� New orders arrive continuously to the system while scheduled

orders could be cancelled;
� Unexpected events occur in the system (employees sickness,

rush orders, lateness on raw-materials or components)

These scenarios make the current schedules easily outdated
and unsuitable. Scheduling under this environment is known as
dynamic, which could be defined as a continuous and ongoing
reactive process where the real time information implies the
revision and dynamic adaptation of current schedules to the
perturbations [1,3].

A Job-Shop like manufacturing system has associated a
dynamic nature observed through several kinds of perturbations
on working conditions and requirements over time. For this kind
of environment, it is important that the ability to efficiently and
effectively adapt, on a continuous basis, existing schedules accord-
ing to the referred disturbances, are mandatory for keeping
business performance levels. The application of optimization
techniques to the resolution of this class of real world scheduling
problems seems really promising. Although, most of the known
work on scheduling deals with optimization of classical Job Shop
Scheduling Problems (JSSP) problems, on static and dynamic
environments [1,2].

The problem of finding good solutions is very important to real
manufacturing systems considering that production rate and
production costs are very dependent on the schedules used for
controlling the flow of work through the system. Production
planning and distribution, transport planning, allocation of
resources (raw materials, manpower or machines in time) and
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task scheduling are combinatorial optimization problems common
in industrial reality. It is not possible to always adopt the optimal
solution for two reasons: due to its complex nature, the resolution
to optimality in an acceptable time for making decisions is
normally intractable, and many problems in reality are so dynamic
that when we process/execute the solution, the characteristics of
the problem have already changed, and this is not the optimal
solution for the new problem. Such dynamic scheduling has
receiving increasing attention amongst researchers and practi-
tioners [3–6]. However, scheduling is still having difficulties in real
world environments and, hence, human intervention is required to
maintain real-time adaptation and optimization.

The interest and research on Decision Support Systems (DSS)
that exhibit self-organization properties is increasingly drawing to
formalize some of the ideas from Autonomic Computing [7,8] for
handling problems in complex manufacturing systems and to
identify mechanisms that makes use of autonomous entities in
solving hard computational problems and in modelling complex
systems through Self-organized or Self-managed behaviours. Self-
managed systems have the ability to manage themselves and to
dynamically adapt to change in accordance with evolving or
dynamic business policies and objectives, allowing the addition
and removal of resources/tasks without service disruption [8]. This
field of research has received much attention in Autonomic
Computing (AC) paradigm [7]. As a result, managers and profes-
sionals can focus on tasks with higher value to the business
process. Agent based Computing technology is well adapted to
model and solve production planning problems in manufacturing
systems and can easily integrate social issues and self-organized
mechanisms into multi-agent architectures.

Nature provides several and diverse examples of social systems
and collective intelligence, such as: insect colonies foraging
behaviour for food; bacteria which appear able to act in a finalized
way; the human brain considering that intelligence and mind
arises from the interaction and coordination of neurons; the
molecule and cell formation considering homeostasis and the
capability of adapting and reproducing arise from protein interac-
tions and antibody detection. Several efforts and contributions
have been related on literature that take collective intelligence as
an inspiration and basis for optimization algorithms developing
based on analogy with social and self-organized behaviour
[4,6,11,10,11]. These approaches have been generally referred as
Swarm Intelligence (SI), and are based on assumption that an
organized behaviour emerges from the interactions of many
simple agents like observed in nature [9,10].

To address DSS for dynamic scheduling with self-organized
capabilities, we intend to integrate and explore the following
paradigms: Multi-Agent Systems (MAS) [12–14], Coordination
and Competition [15,16], Autonomic Computing [7,8] and Swarm
Intelligence [9,10].

In this research, we propose a novel negotiation mechanism, to
the resolution of scheduling in real manufacturing systems, which
is by nature intrinsically a Complex Adaptive System, through
negotiation. Complex in the sense that manufacturing systems are
composed of many components (jobs, operations, machines). Adap-
tive when referring to the fact that the system must dynamically
adapt to external perturbations, like rush orders, or lateness on raw-
materials, and System considering that all components are inter-
connected and interdependent. A negotiation mechanism is pro-
posed considering the following assumptions: A set of autonomous
resource agents, each implementing a SI method for Single Machine
Scheduling Problems (SMSP) are engaged in finding the optimal or
sub-optimal solution; A coordination mechanism combining the
single solutions obtained by the resource agents into a global
solution is performed; A negotiation mechanism to improve global
solutions by machine idle times reducing could be established.

The remaining sections of this paper are organized as follows:
in section 2 the scheduling problem definition is presented.
Theoretical foundations, biological motivation and fundamental
aspects of SI Paradigm namely with focalization on Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO) and Artificial
Bees Colony (ABC) algorithms are summarized in Section 3.
Section 4 presents some related work on negotiation for schedul-
ing through MAS. In Section 5, the competitive architecture for the
self-organized dynamic scheduling is presented and in Section 6 it
is described the proposed negotiation mechanism, which inte-
grates the ideas from collective intelligence and negotiation in a
Multi-Agent System. The computational study and discussion of
results is presented on Section 7. Finally, the paper presents some
conclusions and provides some ideas for future works.

2. Problem definition

Real world scheduling problems have received a lot of attention
in recent years. In this work, we consider the resolution of more
realistic problems. Most real world multi-operation scheduling
problems can be described as dynamic and extended versions of
the classic Job-Shop scheduling combinatorial optimization pro-
blem. In practice, many scheduling problems include further
restrictions and relaxation of others [1,2]. Thus, for example,
precedence constraints among operations of the different jobs
are common because, often, mainly in discrete manufacturing,
products are made of several components that can be seen as
different jobs whose manufacture must be coordinated. Addition-
ally, since a job can be the result of manufacturing and assembly of
parts at several stages, different parts of the same job may be
processed simultaneously on different machines (concurrent or
simultaneous processing). Moreover, in practice, scheduling envir-
onments tend to be dynamic, i.e. new jobs arrive at unpredictable
intervals, machines breakdown, jobs can be cancelled and due
dates and processing times can frequently change.

In this work, solutions are encoded by the direct representa-
tion, where the schedule is described as a sequence of operations,
i.e. each position represents an operation index with initial and
final processing times. Each operation is characterized by the
index (i, j, k, l), where i defines the machine where the operation
k is processed, j the job it belongs to, and l the graph precedence
operation level (level 1 (one) corresponds to initial operations,
without precedents [3].

The minimization of total completion time, also known as
makespan [1,2] is given by

Min Cmax ¼maxðFjÞ; 8 j¼ 1; …; n;

Subject to

STijklþpijklrSTij′k′l′ 8 j¼ 1; …; n; 8ðOijkl;Oij′k′l′Þ ð1Þ

The constraint from (1) represents the precedent relationship
between two operations k and k′(kak′ and kok′ and lo l′) of the
same job j, that could be executed on different machines k and k′,
and at different levels l and l′.

STijklZtijklþ1 8Oijkl ð2Þ

The constraint shown in (2) represents that the processing time
to start operation Oijkl must be greater or equal to the earliest start
time for the same operation. The constraint, specified on (3),
represents machine occupation, where only one operation could
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