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a b s t r a c t

Model-based Genetic Algorithms (GAs), as the Linkage Tree Genetic Algorithm (LTGA) and most Estimation
of Distribution Algorithms (EDAs), assume a reductionist perspective when solving optimization
problems. They use machine-learning techniques to discover problem's substructures that might be
useful to generate new solutions. This idea was grounded on Simon's near-decomposability principle and
Holland's Building Block (BB)-hypothesis, and have enabled the development of effective algorithms in
some contexts. Although near-decomposability is commonly seen in nature, we cannot assume the same
occurs for optimization problems. Therefore, the existence of problems where these algorithms are not
effective is also focus of research. Recent studies have argued that Multidimensional Knapsack Problems
(MKPs) are examples of such cases. This paper extends these studies with an extensive comparison of
various LTGA variants for the MKP. Using a well-known GA as reference, we analyzed the difficulties
faced by the LTGA and explained why its linkage-tree model is not of much help to solve the problem.
The results have shown that the LTGAwas not able to outperform the GA and performed very similarly to
a LTGA using random linkage-models. Further analysis of the linkage-trees, grounded on the knapsack-
core concept, enabled interesting conclusions about the reason that linkage-learning did not provide
useful information to solve MKPs in the settings used for the experiments.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Divide and conquer is a well-known principle of algorithm design,
which basically states that a large problem should be divided in
smaller subproblems in order to solve the whole problem more
efficiently. Although such ideas fit very well in computer science,
decomposition is a much older subject, dating back to Descartes in
1637. In natural sciences, such reductionist view is not an alternative,
but a characteristic presented by many physical, chemical and
biological structures. In the 1960s, Simon [1] argued that the ubiqui-
tousness of hierarchical structures found in complex systems (which
he characterized as nearly decomposable systems) has important role
in the feasibility of evolution, being an explanation to the effectiveness
of evolution in natural and artificial systems [2].

Influenced by such context and based on the evolutionary
theory, Holland [3] proposed Genetic Algorithms (GAs) in the
1970s and developed the schema theorem and Building Block
(BB) hypothesis to explain the performance of GAs. In light of
history, it is possible to establish a connection between the BB

hypothesis and Simon's near-decomposability principle [1,3], and
although the BB hypothesis has been strongly criticized these days,
its general ideas have been successfully used as insights for more
effective algorithms [4,5].

The most significant advances in this field were found under the
umbrella of linkage learning [6,7]. In Simon's perspective, linkage-
learning would be a procedure to identify the subsystems from a
whole large system. In Holland and GA's perspective, linkage-learning
would be a procedure to identify the BBs of a solution for a problem.
This whole idea assumes that there are substructures to be discovered
and that by knowing them, GAs could reach nearly optimal perfor-
mance in the exploration of the search space. As we could expect,
linkage-learning procedures are implemented using machine learning
techniques, therefore, the limitations of these techniques also limit the
applicability of linkage-learning.

The first multivariate linkage-learning implementations came from
Estimation of Distribution Algorithms (EDAs) as the Extended Compact
Genetic Algorithm (eCGA) [6] and Bayesian Optimization Algorithms
(BOAs) [8]. These algorithms build multivariate probabilistic models to
describe statistical dependences among variables and use those
dependencies as linkage information to sample new solutions and
guide the search [9]. Early developments of EDAs considered the
representativity of a model crucial for an efficient EDA, therefore,
algorithms as BOA (using Bayesian network models) have been
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extensively studied and, indeed, have shown interesting results in
many hard optimization problems [8]. Recently, the Linkage Tree
Genetic Algorithm (LTGA) introduced a new way to use linkage
information not based in model sampling [10]. Differently from EDAs,
the LTGA does not use a probabilistic model, but only a linkage model
which guides an ingenious hierarchical crossover. This new approach
has provided interesting results in complex nearly decomposable
benchmark problems and required smaller population sizes, what
enabled its model-building step to be considerably less expensive than
its counterparts [10,11].

Model-based GAs have shown relevant results for nearly decom-
posable problems as NK-landscapes and spin-glasses [10,8,12]. Some
methods have even enforced the building of modular models in order
to exploit the near-decomposability assumption [13]. However, there
are also few studies concerning the usefulness of such models to solve
a broader class of optimization problems, where the underlying
structure of the problems is not well-known or when such structures
are not easy to learn [14–17]. Most multivariate model-building
algorithms assume the existence of substructures, i.e. near-decompo-
sability, but what if this characteristic is not present, how these
algorithms would perform? Recently, Martins and Delbem [18] have
shown that LTGA seems not to benefit from its linkage-learning when
solving Multidimensional Knapsack Problem (MKP), in a sense that by
using a learning procedure or using a random linkage model very
similar results were obtained. The existence of problems not suitable
for model-based GAs is a well-known fact (as justified, in general,
by the no free-lunch theorem [19]), but how to identify those
problems in a general black-box scenario is still an open question.
Due to these aspects, it is of great importance for the field to better
understand the limitations of linkage-learning in extracting useful
information about optimization problems beyond the context of
benchmark functions.

This paper extends the studies on the MKP with a performance
analysis of different versions of the LTGA using the well-known Chu
and Beasley Genetic Algorithm (CBGA) as reference. We modified the
original LTGA in order to make it similar to the CBGA. By implement-
ing mutation and a diversity preservation mechanism, we could
evaluate the importance of each of these CBGA's operators. Concerning
the LTGA's elements, we also evaluated a complete-linkage clustering in
place of the Unweighted Pair Grouping Method with Arithmetic-mean
(UPGMA) originally used by the LTGA. Results for the MKP enabled an
analysis of the linkage-tree learning implemented by these algorithms
and, using concepts from information-theory, an explanation of
why the model built was not of much help to solve MKP instances.
Model-based GAs bridge machine-learning and population-based
metaheuristics in a very natural way, therefore, a systematic analysis
of linkage-learning in the MKP context can increase knowledge about
the methods implemented, stimulating progress in the field [20].

This paper is organized as follows: Section 2 reviews some details
about the MKP and describe the CBGA and LTGA used in the
experiments. Section 3 clarifies the methods used to prove our
hypothesis and defines the settings and the different implementations
used in the experiments. Section 4 describes the performance compar-
isons among many LTGA versions and the CBGA in many MKP
instances, focusing the difficulties of using linkage-learning to solve
them. Section 5 summarizes the results and discusses how linkage-
learning limitations could be circumvented by the use of context-
specific reproduction operators.

2. Background

2.1. The multidimensional knapsack problem

The multidimensional knapsack problem (MKP) is an well-known
strongly NP-Hard combinatorial optimization problem [21,22]. The

objective is, from a set of items, to choose a subset which gives
maximum total profit, restricted by knapsack-capacity constraints.
Differently from the unidimensional case, in the MKP the knapsack
capacity is bounded by m41 constraints, formulated as follows:

max f ðxÞ ¼ ∑
n

j ¼ 1
pjxj;

subject to ∑
n

j ¼ 1
wijxjrci; i¼ 1;…;m;

xjAf0;1g; j¼ 1;…;n:

where, there are n items available, with profits pj40 ðj¼ 1;…;nÞ,
and m resources available in amounts ci40 ði¼ 1;…;mÞ. Each
chosen item contributes with pj for the total profit and consumes wij

from each resource i. The number of resources available defines
the knapsack dimensionality, in feasible solutions the total resource
consumption do not surpasses any capacity ci; 8 iAf1;…;mg.

The MKP is considerably harder than its unidimensional
counterpart, not admitting an efficient polynomial-time approx-
imation scheme even for m¼2 [23]. Furthermore, MKP hardness
increases with m and larger instances still cannot be effectively
solved to optimality. Due to these characteristics a large number of
papers have been published regarding the MKP, concerning both
exact and heuristic methods.

One of the earliest references concerning MKPs was a dynamic
programming approach proposed by Gilmore and Gomory [24], which
was further extended by Weingartner and Ness [25] by embedding
heuristics to the algorithm. Branch-and-bound was also used to
improve dynamic programming approaches, as proposed by Marsten
[26,27]. In the same context, Shih [28] proposed the first branch-and-
bound implementation based on linear programming. However, due
to high space requirements and the limited computational capacity,
such approaches were limited to very small problems. In order to
circumvent such limitations, Gavish and Pirkul [29] developed a
branch-and-bound using rules to reduce the problem size, obtaining
better results than Shih's method. A more recent approach based on
an approximated dynamic programming was proposed by Bertsimas
[30], while a hybridization with a branch-and-cut-procedure was
proposed by Boyer [31].

In the 1990s, many important results were obtained through a
more extensive use of meta-heuristics. Tabu-search methods, as
developed by Glover and Kochenberger [32] and further improved
by Hanafi and Freville [33] in 1998, were able to solve to optimality all
the public instances available so far [21]. At the same year, Chu and
Beasley [34] proposed the first competitive GA for the MKP and they
also made available a well-designed instance set, containing large
correlated instances (n¼ 100; 250;500 and m¼ 5;10;30). Several of
their results for these instances were considerably improved by
Vasquez [35,36], through a tabu-search algorithm. After that, many
studies proposed new tabu-search methods for the MKP [37–39]. In
GA's field, CBGA has influenced a series of studies concerning new
GA's operators and fitness-landscapes analysis [40–44], and still is
used as reference for more recent works with univariate EDAs
[45,46,17,18], particle swarm optimization [47,48], differential evolu-
tion [49]. From now on, we use the CBGA as reference framework, for
a more complete review of MKP's peculiarities see [50,21,22,51], for
state-of-the-art results we suggest [52–54].

2.1.1. Efficiencies and the core concept
Among the most successful algorithms for the MKP, both

exact and heuristics, the concept of core is usually applied. The
main idea of core is very simple, some items are more valuable
than others due to the relation between their profit and size
(pseudo-utility ratio or efficiency). Items with high/low efficiencies
are commonly set to 1=0 in high-quality solutions, therefore, using
this idea a dimensionality reduction is possible, because the search
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