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a b s t r a c t

Multiple Criteria Decision-Making (MCDM) based Multi-objective Evolutionary Algorithms (MOEAs) are
increasingly becoming popular for dealing with optimization problems with more than three objectives,
commonly termed as many-objective optimization problems (MaOPs). These algorithms elicit prefer-
ences from a single or multiple Decision Makers (DMs), a priori or interactively, to guide the search
towards the solutions most preferred by the DM(s), as against the whole Pareto-optimal Front (POF).
Despite its promise for dealing with MaOPs, the utility of this approach is impaired by the lack of—
objectivity; repeatability; consistency; and coherence in DM's preferences. This paper proposes a machine
learning based framework to counter the above limitations. Towards it, the preference-structure of the
different objectives embedded in the problem model is learnt in terms of: a smallest set of conflicting
objectives which can generate the same POF as the original problem; the smallest objective sets
corresponding to pre-specified errors; and the objective sets of pre-specified sizes that correspond to
minimum error. While the focus is on demonstrating how the proposed framework could serve as a
decision support for the DM, its performance is also studied vis-à-vis an alternative approach (based on
dominance relation preservation), for a wide range of test problems and a real-world problem. The
results mark a new direction for MCDM based MOEAs for MaOPs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The need for handling many objectives (four or more) is being
increasingly realized in industry. While the existing MOEAs have been
well utilized for solving two- or three-objective real-world problems, it
is alarming that the performance of most existing MOEAs severely
deteriorates with an increase in the number of objectives (M) beyond
three [1–3].

The plausible reasons for the performance deterioration of
MOEAs, for MZ4, are the following:

� For a good POF-approximation (complete convergence and full
coverage), the requirement of the population size used by the
MOEAs grows exponentially with M. Hence, while working
within practically reasonable computational resources and

time, a good POF-approximation for MaOPs by the MOEAs is a
very difficult task.

� Most existing MOEAs are based on the Pareto-dominance based
primary selection, which in the case of MaOPs becomes ineffective,
given that almost the entire population becomes non-dominated
from the early generations itself [4,5]. In fact, experiments in [6]
have revealed that for M412, 100% population members become
non-dominated in very few generations. This results in poor
selection pressure for convergence to the POF.

While the difficulty associated with primary selection based on
Pareto-dominance is in principle countered by the indicator based
MOEAs [7,8], their running time increases exponentially with M
[9–11], impeding their wider utility. The decomposition based
MOEA/D [12] is also found to cope better with MaOPs [13].
However, owing to its use of the simplex-lattice design [14] for
generation of coefficient vectors for aggregation of the original
objectives, the population size ought to increase nonlinearly with
M, and cannot be fixed at will. While the use of uniform design
method [15] promises to counter the above limitations, its perfor-
mance remains to be tested on a wider range of problems.
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Given the above difficulties, the merit in guiding an MOEA to only
a few DM-preferred solutions, as against the whole POF, is being
increasingly realized. This is affirmed by the growing emphasis
on the MCDM based MOEAs [16,17]. However, their applicability
may be impaired owing to the cognitive limitations of the DM
[18–20]; and the lack of objectivity [21–23] and coherence [24] in
DM's preferences.

This paper aims to counter the above limitations through a
rationally derived decision support that could inform the DM about
the preference-structure of the objective functions, inherent in the
problem model itself. The rationale for this decision support lies in
the fact that developing the models for an optimization problem at
the first place, requires a lot of domain expertise, time and physical
resources. Hence, the preference-structure embedded in these
models cannot be treated as trivial, instead it could be used to
guide the preference articulation by the DM. To meet its aim, this
paper proposes a machine learning based framework that operates
on the objective vectors of the non-dominated solutions obtained
from an MOEA for the given problem-model;learns the preference-
structure of the objective functions by preserving the correla-
tion-structure of the solutions;and provides the decision support
in terms of:

I Revelation of an essential objective set: Here, for a given
M-objective problem denoted by F 0 ¼ ff 1; f 2;…; f Mg, the frame-
work reveals an essential objective set—the smallest set of
conflicting objectives1 (FT , jFT j ¼mðmrMÞ) that can generate
the same POF as the original objective set.

II Preference-ranking of all the objective functions: The frame-
work facilitates preference-ranking of all the objectives by
determining their preference-weights (wis), such that wiZ0
and ∑M

i ¼ 1wi ¼ 1. Each preference-weight essentially represents
the normalized error (variance lost) that would be incurred, if
the associated objective were to be eliminated.

III δ-MOSS (δ-minimum objective subset) analysis: Here, the DM
may specify the allowable degree of error in terms of δ, where
0rδr1, and may be interested to know the smallest subset of
objectives (F fδgs) which ensures that the error associated with
omission of the remaining objectives (in the set F 0\F fδgs) does
not exceed δ. F fδgs is referred as the δ-minimum2 set, and jF fδgsj
denotes its size.

IV k-EMOSS (minimum objective subset of size k with minimum
error) analysis: Here, the DM may specify an allowable set size
k (by specifying p;0rpr1, where k¼ ⌈pM⌉), and may be
interested to know the subset of k objectives (F fkgs), such that
the error associated with omission of the remaining objectives
(in the set F 0\F fkgs) is the minimum, compared to that
corresponding to any other possible combination of k objec-
tives. F fkgs is referred as the k-minimum set, and the associated
error, referred as k-minimum error, is denoted by En

k .
V Visual representation: The practical considerations demand

that the amount of time sought from the DM should be as
short as possible, and the information exchange (what is shown
to-, and asked from-) with the DM should be as simple and
uncomplicated as possible. Here, a simple yet meaningful visual
representation of the above analysis results is presented that
could serve as a snap-shot guide for the DM to base his or her
preferences on.

While the proposed machine learning based framework is
based on the generalization of [25], the distinctive and significant
contributions of this paper relate to the following:

1. To the best of the authors’ knowledge, this paper is the first in
its assertion that in the case of MaOPs in particular, a rationally
derived decision support is essential for the MCDM based
MOEAs to be practically relevant. In doing so, this paper
identifies:
(a) the different features, such as objectivity; repeatability;

consistency; and coherence (discussed later), that the DM-
preferences should be characterized with.

(b) that the natural basis for a rationally derived decision
support lies in the process of modeling an optimization
problem at the first place, as it requires multiple domain
experts, time and physical resources.

(c) that the quest for a rationally derived decision support
could be met by employing machine learning techniques
on the solution sets obtained from MOEAs for the given
problem model.

2. While the focus in [25] is purely limited to the Item I (above),
the scope of this paper is extended to include the Items II–V
(above). This becomes possible owing to the ability of the
proposed framework (unlike in [25]) to determine the
preference-weights for all the objectives—including the essen-
tial and redundant ones.

3. This paper puts a special emphasis on discussing the accuracy
of the decision support. In this context, it may be noted that an
objective reduction approach based on dominance relation
preservation [26,27] has been generalized to offer the decision
support in terms of δ-MOSS and k-EMOSS analysis [28,29].
However, despite its wide publication, no effort has been made
by the author(s) to interpret the accuracy/inaccuracy of the
reported results in the wake of the approach's ability/inability
to handle nonlinearity and noise3 in the MOEA solutions that
serve as the input data. This paper marks the first attempt to
investigate the above issue, and offers valuable insights as to
why the proposed framework may be more generic and
accurate than that based on dominance relation preservation.
To support its arguments, this paper considers:
(a) a nine-objective, radar waveform optimization problem,

and highlights that the decision support offered by the
proposed framework is entirely consistent with the physics
of the problem, unlike the case of dominance relation
preservation approach.

(b) a range of test problems that are investigated with regard
to solutions directly sampled on to the true POF (noise-free
solutions, allowing for isolated investigation of the issue of
nonlinearity), and also those obtained from an MOEA.

4. The results presented in this paper are new and are based on
over 1000 simulations4 performed on 12 different versions of
test problems and a real-world problem.

The remaining paper is organized as follows. Sections 2 and 3
present the rationale for a decision support for MaOPs, and the
related research, respectively. The proposed machine learning
based framework is presented in Section 4, and demonstrated on

1 Two objectives are said to be in conflict if there is no single solution that
simultaneously optimizes each objective.

2 For a given 0rδr0, there may be multiple subsets of objectives, which
ensure that the error associated with omission of the remaining objectives does not
exceed δ. Each such subset is referred as δ-minimal objective subset. However, the
δ-minimal objective subset having the smallest size is referred as δ-minimum
objective subset.

3 In the current context, noise is defined as the difference in the dominance
relations or the correlation-structure, between the Pareto-optimal solutions and
those obtained from an MOEA (more details, in Section 4).

4 These simulations relate to (i) 20 different seeds for the underlying MOEA
(ϵ-MOEA [30]), for each test problem, (ii) one set of solutions directly sampled on
the true POF, for each test problem, (iii) the solution sets corresponding to 30 runs
conducted by MSOPS-II [31], for the real-world, and (iv) the δ-MOSS and k-EMOSS
analysis based on the proposed framework and also a dominance relation
preservation based algorithm, for each data set referred above.
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