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a b s t r a c t

This paper delivers a study on the change of rank of input matrix in Extreme Learning Machine (ELM)
and the relationship between the rank of input matrix and the residence error of training an ELM. From
the viewpoint of data analysis, the study reveals why ELM has a decreasing residence error with the
increase of number of nodes in hidden layer and what role the Sigmoid function plays in increasing the
rank of input matrix. Furthermore the relationship between the stability of solutions and the rank of
output matrix is also discussed. An application of residence error to genetic algorithms of minimizing
L1-norm ELM is given.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extreme learning machines (ELMs) proposed in [14,15] are
a type of single hidden layer feed-forward neural networks
(SLFNs) in which the weights between input layer and hidden
layer are chosen randomly while the weights between hidden
layer and output layer are obtained by solving a system of linear
matrix equations. ELMs adopt the sum of squared losses on the
training error as the objective function, and then turn training of
output weights into a regularized least square problem. It has been
shown that SLFNs only with randomly generated input weights
and tunable output weights can maintain their universal approx-
imation ability [10,11,29]. In comparison with gradient-descent
based algorithms, ELMs have much more efficient training and
usually lead to better generalization performance [21,25,27].

One can find considerable references [2,12,13,18,24–29] in recent
decade regarding the ELM study. We are now interested in ELM's
training residence error and approximation capability, and a very brief
literature review is given as follows. Hornik in [6] proved that, if the
activation function is continuous, bounded, and non-constant, then
continuous mappings can be approximated by SLFNs with additive
hidden nodes over compact input sets. Leshno et al. in [16] improved

the result of [6] by proving that SLFNs with additive hidden nodes and
with a non-polynomial activation function can approximate any
continuous target functions [16]. Huang and Babri [7] show that an
SLFN with at most N hidden nodes and with almost any nonlinear
activation function can learn N distinct observations with zero error,
where N is the number of training samples. Furthermore, Huang et al.
[8–10] recently proposed a series of learning algorithms referred to as
incremental extreme learning machines (I-ELMs) where the number
of hidden layer nodes are gradually added and showed that such
I-ELMs can converge to any continuous function as long as the hidden
activation functions are nonlinear piecewise continuous. Following [9],
Feng et al. [4] proposed an error minimized extreme learning machine
(EM-ELM), which can add random hidden nodes to SLFNs one by one
or group by group (with varying group size). During the growth of the
networks, the output weights are updated incrementally. The conver-
gence of this approach is proved.

Based on the result of [1] in which the authors pointed out that
for the feed-forward neural networks, the smaller the norm of
weights and training error is, the better generalization perfor-
mance the networks tend to have, all ELM algorithms tend to find
the minimum norm least square solution such that a smaller
training error can be achieved. This study focuses on the change
of rank of input matrix in ELM and the relationship between the
rank of input matrix and the residence error of training an ELM.
It theoretically confirms that the increase of input dimension given
by random weights and the increase of rank of middle matrix
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induced by Sigmoid transformation play the crucial role in the
entire process of training an ELM.

All existing references indicate that ELM is a useful and efficient
technique for supervised learning. But there is no article yet to
clearly explain why the ELM can effectively work well with a
simple structure and fast training. This paper makes an attempt to
give an explanation from the angle of relationship between ELM's
training residence error and the rank of input matrix.

The rest of this paper is organized as follows. Section 2 lists a brief
review on the approximation ability and error analysis of ELMs.
Section 3 investigates the increase of dimension for input matrix and
the relationship of rank between input matrix and middle matrix,
and Section 4 studies the impact of Sigmoid transformation on the
increase of rank of output matrix. Section 5 studies the estimation of
residence error and stability of solution. Then, an application of
residence error to genetic algorithms of minimizing L1-norm ELM is
given in Section 6. Section 7 of this paper presents our conclusion.

2. Extreme learning machine

Usually an ELM means a three layer neural network in which
the weights between input layer and hidden layer are randomly
selected and the weights between hidden layer and output layer
are determined by solving a generalized system of linear equations
(i.e., by computing the pseudo inverse of a matrix). Fig. 1 depicts
the basic structure of an ELM in which we suppose that the input
layer has n nodes, the hidden layer has m nodes, and the output
layer have has only one node.

We now analyze the training process of an ELM. The training
task is to determine the connection weights rij and βj ði¼ 1;
2;⋯;n; j¼ 1;2;⋯;mÞ. Since the weights rij ði¼ 1;2;⋯;n; j¼ 1;
2;⋯;mÞ are randomly selected, the training task is reduced to
determine βj ðj¼ 1;2;⋯;mÞ only. Suppose that the set of training
data contains N examples which can be expressed as an input
matrix A (with N rows and n columns) and a N-dimensional output
vector b, respectively denoted by

AN�n ¼

a11 a12 … a1n
a21 a22 … a2n
… … … …
aN1 aN2 … aNn

0
BBBB@

1
CCCCA and bN�1 ¼

b1
b2
⋮
bN

0
BBBB@

1
CCCCA:

The weights between the input layer and hidden layer are
expressed as a matrix with n rows and m columns, i.e., R¼
ðrijÞn�m, and the weights between the hidden layer and output
layer are denoted as an m-dimensional vector, i.e., β¼ ðβ1; β2;⋯;

βmÞT . Let

SN�m ¼Δ A
N�n

R
n�m

¼ ðsijÞN�m and H
N�m

¼Δ ðf ðSijÞÞN�m ¼ ðhijÞN�m;

where f ðxÞ ¼ ð1=1þe� xÞ denotes the Sigmoid function. Then the
training task of the ELM is transferred to solve the following
system of linear equations Hβ¼ b, which is equivalent to the

following optimization problem:

min
βARm

‖ b
N�1

� H
N�m

β
m�1

‖2: ð1Þ

Obviously the solution of Eq. (1) is not unique in a general case.
From the viewpoint of regularization, Huang et al. [10,13,15]
suggested to use the minimum-norm minimum least square
solution as the final one:

min
jjβjj

min
βARm

‖ b
N�1

� H
N�m

β
m�1

‖2
� �

: ð2Þ

It is easy to see that the solutions of Eqs. (1) and (2) can be
respectively expressed as

β¼H� b and β¼Hþb;

where H� denotes any generalized inverse matrix H while Hþ

denotes the plus-generalized inverse this is unique for an matrix H.
We divided the above-mentioned training process of an ELM as

three steps: (1) dimension increase for input matrix; (2) rank
increase for output matrix; and (3) solving a system of linear
equations with full rank matrix of coefficients. The three steps are
depicted in Fig. 2.

Step 1 shows a process of increasing dimension of input matrix A
since in almost every case of ELM applications the number of
hidden nodes is much bigger than the number of input nodes. Ref.
[24] discussed the impact of increasing dimension of input matrix
and pointed out that without the dimension increase the ELMwill
not obtain a good generalization and approximation ability. In
fact, the central supporting theorem of EML algorithms, given by
Zhang et al. in [29], stated a process of approximation with the
increase of number of hidden nodes.
Step 2 gives a process of increasing rank of input matrix.
Although in step 1 the input matrix A (with N rows and n
columns) becomes S (with N rows and m columns) through the
multiplication to a random weight matrix R and m is bigger
than n, the rank of matrix S is less than or equal to the rank of
matrix A. It is because the step 1 is only a linear transformation
(the simple proof remains in next section). The essence of step
2 is a nonlinear transformation. ELM uses a Sigmoid function
which usually plays a role of transforming from a waning rank
matrix S to a full rank matrix H.
Step 3 means to solve a system of linear equations. If the output
layer has more than one node then it is a system of linear
matrix equations. It is well known that the criterion of least
square is frequently used to solve the system. It is evaluated by
the approximation error (i.e., the residence error). Here we are
mainly interested in the relationship between the approxima-
tion error and the rank of coefficient matrix.

To be convenient for our following discussions, we summarize
the used symbols or notations as follows:

A—input matrix;
R—random weight matrix;
β—weight vector to be solved;
S—middle matrix;
H—output matrix;
Hþ—solution matrix;
b—expected output vector.

3. Increase of dimension for input matrix

This section has two aims. One is to make clear the impact of
dimension increase (from A to S) on the solution of Hβ¼ b, theFig. 1. A simple ELM structure.
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