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a b s t r a c t

Classification is a mainstream within the machine learning community. As a result, a large number of
learning algorithms have been proposed. The performance of many of these could highly depend on the
chosen values of their hyper-parameters. This paper introduces a novel method for addressing the model
selection problem for a given classification task. In our model selection formulation, both the learning
algorithm and its hyper-parameters are considered. In our proposed approach, model selection is tackled
as a multi-objective optimization problem. The empirical error, or training error, and the model
complexity are defined as the objectives. We adopt a multi-objective evolutionary algorithm as the
search engine, due to its high performance and its advantages for solving multi-objective problems. The
model complexity is estimated experimentally, in a general fashion, for any learning algorithm, through
the VC dimension. Strategies for choosing a single model or for constructing an ensemble of models from
the resulting non-dominated set are also proposed. Experimental results on benchmark data sets
indicate the effectiveness of the proposed approach. Furthermore, a comparative study shows that the
obtained models are highly competitive, in terms of generalization performance, with other methods in
the state of the art that focus on a single-learning algorithm, or a single-objective approach.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Classification is a common task in supervised learning. Its
popularity is due to its use in a wide range of applications, such as
medical diagnosis and text categorization. In the machine learning
community, several learning algorithms to fit a model have been
proposed, including decisions trees, artificial neural networks, and
those based on statistical learning. However, to date there is not a
universal “best” model; this is referred to as the No Free Lunch
Theorem [47]. Moreover, many of these learning algorithms have a set
of adjustable parameters, called hyper-parameters, whose fine-
tuning can affect their generalization ability. Taking that into con-
sideration, one might ask the questions: what learning algorithm
should be used for a specific problem? Also, given a learning
algorithm, what hyper-parameters values should be chosen? These
questions are related to the issue of model selection.

In the literature, there are several studies that address the
model selection problem. Among these, some have approached it

as an optimization problem, differing in the search technique
adopted, including gradient-based methods [1,4,6], grid-search
[7], or bio-inspired meta-heuristics such as evolutionary algo-
rithms [8,20,22,32,34], artificial immune systems [2] or particle
swarm optimizers [3,18,33]. Grid-search is the simplest one, but it
could be time-consuming. Although gradient-based methods tend
to be more (computationally) efficient, they are very susceptible to
the initial search point and they can easily get trapped in a local
optimum. Evolutionary algorithms have gained popularity because
of their ease of use and their ability to overcome these short-
comings. Indeed, evolutionary algorithms can be less computa-
tionally expensive than grid-search, and are less susceptible to
their initial search points than gradient-based methods. Further-
more, evolutionary algorithms do not require gradient information
and can be easily parallelized.

Another major issue in model selection is the criterion used for
this purpose. In this direction, we can differentiate the works that
consider a single-objective criterion and those that consider
multiple criteria. The single-objective criterion approaches are
generally based on an estimation of the generalization error
through the well-known k-fold cross validation [3,18,34,43].
Attention has also been paid to considering multiple criteria.
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These works typically consider the model performance and some
criterion for penalizing the model complexity [2,44]. Others have
considered either to minimize the sensitivity and specificity [8,32],
or different estimates of the model performance [21,22,37]. Alter-
natively, multiple criteria have also been approached by simplify-
ing the objectives in a weighted linear combination of these [40]
instead of simultaneously optimizing the objectives.

Despite these efforts, most of the existing studies consider a
single model type (i.e., the learning algorithm is fixed a priori and
the model selection task consists of choosing its hyper-para-
meters), which could not be the most suitable for a particular
problem. To the best of the authors' knowledge, nowadays the
works that address both the learning algorithm and the hyper-
parameters selection are scarce (e.g., [18,22,43]), and most of them
tackle the problem as a single-objective one. Notwithstanding, the
disadvantages of using a single-objective approach for hyper-
parameters optimization with respect to the generalization per-
formance have been pointed out by several authors [8,21,28].

Inspired from previous ideas, we address both the problem of
choosing a learning algorithm and its hyper-parameters during the
model selection, which is faced as a multi-objective optimization
problem. The error on training samples and the model complexity
are considered as the objectives in our formulation. Unlike previous
works in which the model complexity estimation depends on the
learning algorithm (e.g., the number of support vectors in support
vector machines), we propose to estimate it through the VC dimen-
sion (for Vapnik–Chervonensky dimension) [46].

The main contribution of this paper is a general model selection
framework, whose formulation makes it applicable to any learning
algorithm. Additional contributions of the paper are as follows: (i) a
multi-objective approach for tackling the model type selection
problem (i.e., model type plus its hyper-parameters); (ii) the use
of the VC dimension in the model type selection formulation for
estimating the model complexity to any model type; and (iii) since
the outcome of the multi-objective optimization process is a set of
solutions (models), that satisfy an optimal trade-off between the
objectives from which a model should be chosen, the strategies
proposed for constructing a final classification model from the non-
dominated solutions set are an additional contribution. The perfor-
mance of our proposed approach is assessed on several binary
classification benchmark data sets widely used in the literature.
The experimental results and comparisons show that our proposal is
able to select highly effective classification models.

The remainder of this paper is organized as follows. In Section 2,
we describe the VC dimension theory and the way in which it can be
estimated in an experimental fashion. Section 3 presents our
proposal, describing in detail how the model selection problem is
formulated as a multi-objective one. It also describes the proposal for
constructing a final model from solutions in the resulting non-
dominated front. Section 4 presents the experiments performed to
test the validity of our proposal using benchmark data sets, and the
results obtained from these. Finally, the main conclusions and future
work direction paths are presented in Section 5.

2. VC dimension estimation

Vapnik and Chervonenkis defined the VC dimension [46] as a
measure of the capacity of a learning algorithm. The VC dimension
is defined through the notion of “shattering”, which is described as
follows: if we have a set of n samples that can be separated by a set
of indicator functions F (functions that map a sample to its
corresponding binary label) in all 2n possible ways, we say that
the set of samples is shattered by the set of functions F. The VC
dimension can be formally defined as [10]:

A set of functions F has a VC dimension h if there are h samples
that can be shattered by the set of functions F, but there are not
hþ1 samples that can be shattered by the set of functions F.

Notwithstanding that the VC dimension can be seen as a
measure of the model complexity [23], exact analytic estimates
of this are only known for a few classes of functions (linear
models), whereas for many others it is unknown. To overcome
this, Vapnik et al. [45] proposed a method to experimentally
estimate the effective VC dimension of a model. This approach is
based on the best fitting between an analytic formula and
measurements of the maximum deviation between the error rates
on two independent data sets of varying sizes. Conceptually, this
approach can be applied to any learning algorithm [10].

The maximum deviation, ξðnÞ, of the error rates between two
independent labeled data sets is defined as

ξðnÞ ¼max
ω

ð∣errðZ1
nÞ�errðZ2

nÞ∣Þ ð1Þ

where Z1
n and Z2

n are two independent labeled data sets of size n,
errðZnÞ is the error rate on the data set Zn, and ω is the set of
parameters of a binary classifier.

As it is stated in [45], ξðnÞ is bounded as follows:

ξðnÞrΦðn=hÞ ð2Þ

where

ΦðτÞ ¼
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where τ¼ n=h, and the values of the parameters a¼0.16 and
b¼1.2 were empirically determined. The value of k¼0.14928 is
determined such that Φð0:5Þ ¼ 1.

Since the bound in Eq. (2) is tight, it can be assumed that

ξðnÞ �Φðn=hÞ ð4Þ

The VC dimension h can be estimated from Eqs. (3) and (4). The
maximum deviation ξðnÞ can be estimated by simultaneously
minimizing the error rate on one labeled set and maximizing the
error rate in the other one. This can be accomplished through the
following procedure [10,45]:

1. Generate a random labeled set Z2n of size 2n.
2. Split the set Z2n into two sets of size n: Z1

n and Z2
n.

3. Flip the labels of the set Z1
n to form Z

1
n.

4. Merge the two sets: Z ¼ Z
1
n [ Z2

n, and train the binary classifier
with the set Z.

5. Evaluate Z1
n and Z2

n with the trained classifier. Measure the
difference of the error rates between the two sets: ξðnÞ ¼
∣errðZ1

nÞ�errðZ2
nÞ∣.

This procedure gives an estimate of ξðnÞ from which an
estimate of h can be obtained. In order to reduce the variability
in the estimation, this procedure is repeated for different data sets
varying the samples sizes n1;…;nk. Moreover, to reduce the
variability due to the random samples, the procedure is repeated
several times (mj) for each sample set of size ni. The average value
for each experiment is taken for each ni: ξðn1Þ;…; ξðnkÞ. The
effective VC dimension can be estimated by finding the parameter
hn that best fits ξðnÞ with the theoretical formula Φðn=hÞ, as
follows:

hn ¼ argmin
h

∑
k

i ¼ 1
½ξðniÞ�Φðni=hÞ�2 ð5Þ
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