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The design of a multiagent system based on simple interaction rules is presented, which can generate
different types of overall behaviours, from asymptotically stable to chaotic, verified by two tests for
chaos. Exogenous perturbations are analysed, showing that very small changes can have a great impact
on the evolution of the system. Some methods of controlling such perturbations in order to have a
desirable final state are investigated. Also, endogenous perturbations and the effect of alternative
decisions on the evolution of agent utilities are examined. Different methods are suggested for
describing the behaviour of the multiagent system.
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1. Introduction

Non-linear effects are commonly encountered in dynamic sys-
tems. They are characteristic for example of evolutionary game
theory [37], which aims to enhance the concepts of classical game
theory [43] with evolutionary issues, such as the possibility to adapt
and learn. In general, the fitness of a certain phenotype is, in some
way, proportional to its diffusion in the population. The strategies of
classical game theory are substituted by genetic or cultural traits,
which are inherited, possibly with mutations. The payoff of a game is
interpreted as the fitness of the agents involved [3].

Many such models have been proposed, based on the different
ways in which agents change their behaviours over time. Among
them we can mention replicator dynamics [13,41], its replicator—
mutator generalisation [26] and the quasi-species model [10],
which have been used to model social and multiagent network
dynamics, e.g., [12,24,8].

A review of the group interactions on structured populations,
including lattices, complex networks and coevolutionary models
highlights the synergic contribution of statistical physics, network
science and evolutionary game theory to the analysis of their
dynamics [30]. In general, group interactions cannot be reduced to
the corresponding sum of pairwise interactions.

The evolution of public cooperation on complex networks is
particularly important and has been studied for example in the
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context of public goods games [36] or the emergent behaviour of
agent social networks [20].

In the context of diffusion, which allows players to move within
the population, the analysis of the spatiotemporal patterns reveals
the presence of chaos, which fits the complexity of solutions one is
likely to encounter when studying group interactions on struc-
tured populations [44,30].

The emergence of cooperation within groups of selfish indivi-
duals, where cooperators compete with defectors, is an interesting
research direction because it may seem to contradict natural
selection. Recent results reveal that the evolution of strategies
alone may be insufficient to fully exploit the benefits of coopera-
tive behaviour and that coevolutionary rules can lead to a better
understanding of the occurrence of cooperation [31].

Coevolutionary rules supplement evolutionary games because
not only the strategies evolve over time, but also the environment
and many other factors that affect the outcome of the evolution of
strategies. For example, a commonly used strategy adoption rule in
coevolutionary models is “richest-following” [14], where a certain
player always imitates the strategy of its most successful neigh-
bour [46].

Some coevolutionary processes have a finite duration and do
not directly affect the outcome of the evolutionary games, but
indirectly, due to the changes they produce in the environment.
Others are permanent and introduce dynamical alterations that
affect the evolution of cooperation on a continuous basis [31].

The applicability of the concept of evolutionary games can be
found in many social and natural sciences, with examples such as
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the RNA virus [42], ATP-producing pathways [34] and traffic
congestion [29].

On the other hand, chaos has been extensively studied in
physical systems, including methods to control it for uni-, bi-
and multi-dimensional systems [1]. Also, concepts such as caus-
ality and the principle of minimal change in dynamic systems have
been formalized [27].

Many human-related, e.g., social or economic systems, are
nonlinear even when the underlying rules of individual interac-
tions are known to be rational and deterministic. Prediction is very
difficult or impossible in these situations. However, by trying to
model such phenomena, we can gain some insights regarding the
fundamental nature of the system. Surprising or counterintuitive
behaviours observed in reality can be sometimes explained by the
results of simulations.

Therefore, the emergence of chaos out of social interactions is
very important for descriptive attempts in psychology and sociol-
ogy [16], and multiagent systems are a natural way of modelling
such social interactions. Chaotic behaviour in multiagent systems
has been investigated from many perspectives: the control of
chaos in biological systems with a map depending on the growth
rate [38], the use of a chaotic map by the agents for optimisation [4]
and image segmentation [23], or the study of multiagent systems
stability for economic applications [5]. However, in most of these
approaches, chaos is explicitly injected into the system, by using
a chaotic map, e.g., the well-known logistic map, in the decision
function of the agents.

The main goal of the present work is the design of a set of
simple interaction rules which in turn can generate, through a
cascade effect, different types of overall behaviours, from stable to
chaotic. We believe that these can be considered metaphors for
the different kinds of everyday social or economic interactions,
whose effects are sometimes entirely predictable and can lead to
an equilibrium while some other times fluctuations can widely
affect the system state, and even if the system appears to be stable
for long periods of time, sudden changes can occur unpredictably
because of subtle differences in the internal state of the system.
We also aim at investigating how very small changes can non-
locally ripple throughout the system with great consequences and
whether it is possible to reverse these changes in a non-trivial
way, i.e., by slightly adjusting the system after the initial perturba-
tion has occurred.

The paper is organised as follows. Section 2 presents the
interaction protocol of the multiagent system and its mathema-
tical formalization. Section 3 discusses the stable and unst-
able (including chaotic) behaviours that emerge from the system
execution. Section 4 presents an experimental study regarding the
effects of small exogenous perturbations in the initial state of the
system and the possibility of cancelling them through minimal
external interventions. Section 5 addresses the endogenous per-
turbations, namely alternative decisions made by agents and
provides different methods to describe the differences induced
in system behaviour. The final section contains the conclusions of
this work.

2. The design of the multiagent system

The main goal in designing the structure and the interactions of
the multiagent system was to find a simple setting that can
generate complex behaviours [21]. A delicate balance is needed
in this respect. On the one hand, if the system is too simple, its
behaviour will be completely deterministic. On the other hand, if
the system is overly complex, it would be very difficult to assess
the contribution of the individual internal elements to its observed
evolution. The multiagent system presented as follows is the result

of many attempts of finding this balance. The major versions are
briefly described in Section 2.3.

The proposed system is comprised of n agents; let A be the set
of agents. Each agent has m needs and m resources, whose values
lie in their predefined domains D,, D, = R™. This is a simplified
conceptualization of any social or economic model, where the
interactions of the individuals are based on some resource
exchanges, of any nature, and where individuals have different
valuations of the types of resources involved.

It is assumed that the needs of an agent are fixed (although an
adaptive mechanism could be easily implemented, taking into
account, for example, previous results [19,18]), that its resources
are variable and they change following the continuous interactions
with other agents.

Also, the agents are situated in their execution environment:
each agent a has a position z, and can interact only with the other
agents in its neighbourhood A,. For simplicity, the environment is
considered to be a bi-dimensional square lattice, but this imposes
no limitation on the general interaction model - it can be applied
without changes to any environment topology.

2.1. Social model

Throughout the execution of the system, each agent, in turn,
chooses another agent in its local neighbourhood to interact with.
Each agent a stores the number of previous interactions with any
other agent b, i,(b), and the cumulative outcome of these interac-
tions, o4(b), which is based on the profits resulted from resource
exchanges, as described in the following section.

When an agent a must choose another agent to interact with, it
chooses the agent in its neighbourhood with the highest estimated

outcome: b* = arg maxoq(b).
beAq

The parallelism of agent execution is simulated by running
them sequentially and in random order. Since one of the goals of
the system is to be deterministic, we define the execution order
from the start. Thus, at any time, it can be known which agent will
execute and which other agent it will interact with. When
perturbations are introduced into the system, the same execution
order is preserved. It has been shown that the order of asynchro-
nous processes plays a role in self-organisation within many
multiagent systems [6]. However, in our case this random order
is not necessary to generate complex behaviours. Even if the
agents are always executed in lexicographic order (first Al, then
A2, then A3 etc.), sudden changes in utilities still occur, although
the overall aspect of the system evolution is much smoother.

2.2. Bilateral interaction protocol

In any interaction, each agent tries to satisfy the needs of the
other agent as well as possible, i.e., in decreasing order of its needs.
The interaction actually represents the transfer of a resource
quantum y from an agent to the other. Ideally, each agent would
satisfy the greatest need of the other.

For example, let us consider 3 needs (N) and 3 resources (R) for
2 agents a and b: N,={1, 2, 3}, Np={2, 3,1}, R,={5, 7, 4}, R,={6, 6, 5},
and y=1. Since need 2 is the maximum of agent b, agent a will give
b 1 unit of resource 2. Conversely, b will give a 1 unit of resource 3.

In order to add a layer of nonlinearity, we consider that an
exchange is possible only if the amount of a resource exceeds a
threshold level ¢ and if the giving agent a has a greater amount of
the corresponding selected resource r, than the receiving agent b:
Ra(Tser) > Ry(Tser) and Ra(Tser) > 0.

In the previous situation, if we impose a threshold level =5,
agent a will still give b 1 unit of resource 2, but b will only satisfy
need 1 for agent a.
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