
Semantic similarity method for keyword query system on RDF

Minho Bae a, Sanggil Kang b, Sangyoon Oh a,n

a Department of Computer Engineering, Ajou University, Suwon, Republic of Korea
b Department of Computer and Information Engineering, Inha University, Incheon, Republic of Korea

a r t i c l e i n f o

Article history:
Received 31 October 2013
Received in revised form
11 April 2014
Accepted 23 April 2014
Available online 6 July 2014

Keywords:
Keyword query
RDF
Semantic similarity
WordNet

a b s t r a c t

Keyword query on RDF data is an effective option because it is lightweight and it is not necessary to have
prior knowledge on the data schema or a formal query language such as SPARQL. However, optimizing
the query processing to produce the most relevant results with only minimum computations is a
challenging research issue. Current proposals suffer from several drawbacks, e.g., limited scalability, tight
coupling with the existing ontology, and too many computations. To address these problems, we propose
a novel approach to keyword search with automatic depth decisions using the relational and semantic
similarities. Our approach uses a predicate that represents the semantic relationship between the
subject and object. We take advantage of this to narrow down the target RDF data. The semantic
similarity score is then calculated for objects with the same predicate. We make a linear combination of
two scores to get the similarity score that is used to determine the depth of given keyword query results.
We evaluate our algorithm with other approaches in terms of accuracy and query processing
performance. The results of our empirical experiments show that our approach outperforms other
existing approaches in terms of efficiency and query processing performance.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The RDF data model is a major part of the Semantic Web
architecture, and more RDF data than ever before are available to
represent Web data. As a response to such popularity, there has been
a recent explosion in the number of proposals for the design of an
RDF data management systems that indexes and processes RDF data
sets [1]. However, most of these proposals have not yet completely
solved the scalability or efficiency problems inherit from the RDF
graph model. As the amount of RDF data is quickly approaching the
Web scale, these problems are increasing. Therefore, many of the
proposals and systems limited to single-machine storage with
RDBMS are not feasible to support this scale of RDF data. Although
some of these proposals offer distributed storage that scale as the
data size grows [2,3], the scalability issue is one of the important
research challenges remaining to be solved. Query efficiency is
another challenging research issue. The majority of current proposals
supporting the complex SPARQL language, the W3C recommended
query language for RDF [4]. However, SPARQL expressions are short
for meaningful semantic queries [5] and too complex for simple
information retrieval from large RDF collections.

Several recent proposals have focused on keyword query
concept that does not require any knowledge about the target

RDF data or prior knowledge on the SPARQL query language. As in
a keyword search on the World Wide Web (WWW) through a
popular search engine (e.g., Google or Bing), a keyword query on
RDF data sets requires only keywords instead of triple patterns in
SPARQL (i.e., a triple with variables such as o?x foaf:name Jon
Foobar4) that is formalized based on the RDF structure (i.e.,
triples of subject, predicate, and object). A keyword query is a
more intuitive way of specifying information needs. For massive-
scale RDF data sets, processing a formal query such as SPARQL
requires tremendous number of computations and produces large
amounts of intermediate data for a join operation. As a result, a
keyword query with an optimized indexing structure has become
a promising design for a Web-scale RDF data management system.

However, processing a keyword query on a graph-based RDF
data set is a non-trivial task. Although it is relatively easy to locate
the keyword in the data set, it is a complex and complicated
process to provide ranked results of the keyword query [6]. In this
paper, we identify challenges that need to be tackled to use of a
keyword querying paradigm for a massive-scale RDF data set. For
example, how do we determine the size of the query results (i.e.,
sub-graphs) that will be returned to the user? In other words, how
much search depth (or ranking) do we need to satisfy users? This
is a necessary question to address because, unless we naively
return the whole sub-graph connected to the keyword, we need a
specific depth for each keyword so that the search process (i.e.,
query processing) can be halted at a certain point and the results
returned to the users. For information retrieval on the WWW,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.04.062
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ82 31 219 2633; fax: þ82 31 219 1725.
E-mail address: syoh@ajou.ac.kr (S. Oh).

Neurocomputing 146 (2014) 264–275

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.04.062
http://dx.doi.org/10.1016/j.neucom.2014.04.062
http://dx.doi.org/10.1016/j.neucom.2014.04.062
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.062&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.062&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.062&domain=pdf
mailto:syoh@ajou.ac.kr
http://dx.doi.org/10.1016/j.neucom.2014.04.062


recalling the naïve return results from early search engines, a vast
number of url returns is not a big problem. However, when Google
introduced its pagerank algorithm [7] to rank the results from the
most important first, the quality of the search results improved
astonishingly. Likewise, the depth of the search is a critical factor
for RDF querying. The key research challenges in this area that
have to be addressed are as follows:

□ How can we determine when to stop the search? What metric
can we use to halt the query processing? A ranked keyword
search on graph-based data including RDF data poses certain
challenges. Approaches such as XRANK, XML-based keyword
search [8] utilize a tree structure and the existence of the root
element. However, for a keyword search on RDF data, the same
strategy cannot be applied since the graph structure is more
complex (e.g., it is not hierarchical data storage and there is no
root). In addition, choosing the right metric for both ranking
the results and eventually halting the process is another
challenging research issue. Zhang et al. [9] proposed a multi-
level semantic similarity method that measures the string
similarity between elements of the triple, statements, and
graph. While this approach is practical, we need a general
method that takes advantage of the semantic relationship of
the keyword that can be derived from the predicate.

□ How to develop a comprehensive RDF data management
system to enable an automatic depth determining algorithm
for high-performance query processing at a massive-scale RDF
data. There are two main problems in managing massive-scale
RDF data. First, currently popular systems such as Virtuoso [2]
and RDF-3x [10] are limited in scalability because they were
designed to support a formal query, SPARQL, and use RDBMS
for storage. Second, many approaches to RDF data management
do not fully utilize indexing. They simply use an index to locate
the stored vertex that contains the keyword [6].

Motivated by these problems, we propose a novel automatic
depth search algorithm for an RDF data management system. Our
main contributions to these challenges are as follows:

� Automatic k-depth decision for a keyword search based on
relational and semantic similarities. Our algorithm automa-
tically determines the depth of the search by calculating the
similarity between the given keywords and vertices in the RDF
graph (i.e., RDF data set). In the query processing algorithm, we
first search the keyword in the RDF data set using an index.
Since the predicate represents the semantic relationship
between a subject and object, we take advantage of this to
narrow down the target RDF data. The similarity score is then
calculated for objects with the same predicate using the key-
word vertex. We use the word distance for the relational similarity
and measure the semantic similarity using WordNet [11] value to
determine the semantic similarity score of the object to the given
keyword.

� A novel scalable and high-performance structure indexing.
This algorithm is based on the indexing structure described in
our previous work [12], which explored how to index massive-
scale RDF data sets for formal queries such as SPARQL and
keyword queries. In particular, we extend the indexing struc-
ture for a keyword query and modify the keyword querying
algorithm to adapt the automatic k-depth using the similarity.

To empirically verify the effectiveness of our approach, we
conducted experiments on an RDF data management system
based on our indexing and querying algorithm. In these experi-
ments, we verified the effectiveness of our algorithm and demon-
strate the process of computing the relational and semantic

similarity. Also, we compared our approach with a naïve keyword
search approach in terms of both query response time and
accuracy.

We proceed as follows. In Section 2, we present related
researches of approaches that support a keyword query on an
RDF data set, and algorithms for calculating the similarity in
structured data. In Section 3, we present our approach for an
efficient RDF keyword query processing with an automatic k-depth
decision. In Section 4, we present our empirical experiment results
to demonstrate the effectiveness of our automatic k-depth algo-
rithm for keyword queries on RDF data sets. Finally, we provide
some concluding remarks and describe some future research
directions in Section 5.

2. Related work

There have been a lot of proposals that provide a top-k keyword
query to structured or semi-structured data. In He et al. [6], BLINKs, a
bi-level indexing and query processing scheme was proposed to
search the top-k keyword of a data graph. In addition, the authors
introduced a bi-level indexing to reduce the abundant memory usage
of previous approaches and improve the search performance. For this,
the data graph is partitioned into a sub-graph (or block) rather than
naively storing whole graphs and the shortest path. A keyword list is
built first. The graph is then partitioned into sub-graphs using each
keyword in the list and the breadth first search (BFS) algorithm. Since
it only searches the sub-graph of the keyword, the overall query
processing performance is improved.

The keyword search system over structured data by Elbassuoni
and Blanco [13] directly retrieves results for the keyword query.
Using a keyword phrase, the authors use a sub-graph retrieval
algorithm to return a set of sub-graphs that match the query
keywords using their ranking model. To do so, for all triple data,
they maintain a list of keywords derived from the subject- and
object-associated predicate. They then create an inverted index for
each keyword query with a list of corresponding triples so that
they can join these data to obtain the sub-graphs of all keywords
in the query by adapting the backtracking algorithm [14]. Con-
sidering and maintaining keywords from all three factors (subject,
predicate, and object) requires time, memory, and a well-designed
schema rather than only the literal values of the objects.

In Zhang et al. [9], various methods for dealing with the
similarity in RDF graph matching was proposed. They use four
methods and provided a formula for their integration. The first
method measures the level. If the node is closer, it has a better
similarity. The second method measures a string similarity
between objects using WordNet. Finally, the third and fourth
methods measure the RDF data statement similarity and RDF
graph structure similarity, respectively.

An algorithm for the top-k exploration of sub-graphs to retrieve
the top-k most relevant structured queries was proposed in Tran
et al. [15]. In this proposal, a keyword index is used for elements,
and a structure index is used for an RDF data graph. The keywords
in the query are translated into expressive formal queries. First,
instead of mapping the keywords to the data tuples, they are
mapped to the elements in the data graph using a keyword index.
Next, with each mapping of such keyword elements, the summary
graph (i.e., structure index of the original RDF data graph) is
explored to search for the augmented query graph (substructure)
connecting them. From these sub-graphs, conjunctive queries are
created by mapping the edges with predicates, and the vertices
with variables or literal values. Their system then generates the
top-k queries using a scoring function, instead of computing
answers for the keywords. Finally, users need to select their
appropriate queries from these proposed structure queries to find

M. Bae et al. / Neurocomputing 146 (2014) 264–275 265



Download English Version:

https://daneshyari.com/en/article/406587

Download Persian Version:

https://daneshyari.com/article/406587

Daneshyari.com

https://daneshyari.com/en/article/406587
https://daneshyari.com/article/406587
https://daneshyari.com

