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The data-driven approximation of vector fields that encode dynamical systems is a persistently hard task
in machine learning. If data is sparse and given in the form of velocities derived from few trajectories
only, state-space regions exist, where no information on the vector field and its induced dynamics is
available. Generalization towards such regions is meaningful only if strong biases are introduced, for
instance assumptions on global stability properties of the to-be-learned dynamics. We address this issue
in a novel learning scheme that represents vector fields by means of neural networks, where asymptotic
stability of the induced dynamics is explicitly enforced through utilizing knowledge from Lyapunov's
stability theory, in a predefined workspace. The learning of vector fields is constrained through point-
wise conditions, derived from a suitable Lyapunov function candidate, which is first adjusted towards
the training data. We point out the significance of optimized Lyapunov function candidates and analyze
the approach in a scenario where trajectories are learned and generalized from human handwriting
motions. In addition, we demonstrate that learning from robotic data obtained by kinesthetic teaching of

the humanoid robot iCub leads to robust motion generation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The approximation of vector fields from sparse data that repre-
sent dynamical systems, e.g. to encode quantitative flow visual-
ization [1], optical flow in computer vision [2] or force fields in
motor control [3,4], is an important but also persistently hard
task for learning algorithms. In recent work, vector fields were
applied to learn and generate complex motions for robots [5,6].
In such scenarios, training data typically consist of only a few
trajectories and thus leave many regions in the state space with no
information of the desired vector field. Generalization towards
regions subject to sparse sampling is challenging, because small
errors in the approximation of the vector field can get amplified
during integration and can lead to diverging behavior of the
dynamical system.

Thus, a strong model bias is needed for generalization which
has to be derived from prior knowledge about the underlying
dynamics. In [7], a superposition of irrotational basis fields is
used to approximate a variety of vector patterns, where it is
assumed that the data originate from the gradient of a potential
function. Kuroe and Kawakami introduced a combination of neural
networks to reconstruct vector fields where prior knowledge of
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inherent vector field properties is used to enhance the accuracy
[8,9].

Wave propagation [10], which was introduced to dynamic path
planning in [11], can be used to create potential fields, which
in turn can be adapted to demonstrations [12]. Following the
respective gradients then leads to an inherently stable dynamical
system.

Motion generation methods, developed in computational imi-
tation learning and programming by demonstration, appear to be
promising in order to generalize to unseen areas in the workspace
by providing stable solutions [13-15]. The stability of the motion is
ensured by a linear spring damper system, which generates a
straight line with a biologically plausible velocity profile. The
shape is then induced by adding a perturbation force term. These
time-dependent perturbations are learned by means of a mixture
of Gaussian functions. The force term is suppressed at the end
of the motion ensuring stability, because only the linear compo-
nents drive the dynamical system. An alternative approach to the
standard DMP approach is the task-parameterized Gaussian mix-
ture model (TpGMM [16]), where the parameterization of the
motion is variable. It models a second order dynamical system,
which uses a probabilistic representation of the demonstrations.
This representation can be parameterized time-dependent, task-
dependent or in combination.

For motion generation from vector fields, one prominent
approach is the stable estimator of dynamical systems (SEDS
[17]). This learning approach represents vector fields by a Gaussian
mixture of linear dynamical systems. Learning is achieved by
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solving a nonlinear constrained optimization problem formulated
as a quadratic program. The learned dynamical system then comp-
lies to a specific quadratic Lyapunov function. The main advantage
of this method is that the learned dynamics are provably globally
asymptotically stable. On the downside, the stability constraints
may be too restrictive with respect to the motion that shall be
learned. If the training data and the stability constraints contradict,
accurate learning of the desired motion is prevented.

An extension of SEDS called SEDS-II was very recently pub-
lished in [18] and implements less conservative stability condi-
tions as compared to SEDS. This extension relies on a stabilization
approach called control Lyapunov function derived from Artstein
and Sontag's stability theory [19]. Such functions are used to
stabilize nonlinear dynamical systems through online corrections
at runtime and interfere with the learned dynamical system. This
methodology can be applied in combination with any learning
approach to represent the training data and leaves the stability
issue to the online correction mechanism. However, the learning of
dynamics that satisfy desired Lyapunov functions and guarantees
stability without interfering with the data or requiring online
corrections is so far only solved for special cases and remains
difficult in the case of using a dynamical systems represented by
vector fields.

These issues are partly addressed in [20]. Here a neural net-
work approach is used to learn from demonstrations and to
generate motions for the humanoid robot iCub. The accuracy
performance and the stability are addressed by two separately
trained but superimposed neural networks. The first network
approximates the data while the second network addresses stabi-
lity by learning a velocity field, which implements a contraction
towards the desired movement trajectory. However, the super-
position of two networks seems complex for representing only one
motion. Additionally, no guarantee for stable motion generation
is given.

The contribution of this paper is the introduction of Lyapunov
theory in neural networks learning for stable motion generation.
Therefore, we extend the ideas recently published in [21] and
propose a novel learning approach. This approach is based on the
idea to represent time-independent vector fields in one neural
network that lead to asymptotically stable dynamics in a pre-
defined workspace. The learning is separated into three steps:
First, construct a suitable Lyapunov candidate through para-
meter optimization towards the data. Second, use the constructed
Lyapunov candidate to obtain inequalities constraints for learning.
Third, add inequality constraints which ensure that the dynamics
cannot leave a predefined region. The inequality constraints are
implemented by a quadratic program, which minimizes the
error between the training data and the output of the network.
To keep the amount of used constraints to a minimum, a sampling
algorithm identifies problematic regions and adds constraints until
the dynamical system is stabilized. Thus, the resulting vector
field induces stable dynamics by construction. This approach is
schematically illustrated in Fig. 1.

The reminder of this paper is organized as follows. In Section 2
we explain the theoretical basis of training neural networks with
stability constraints. In Section 3 we show that the accuracy of the
estimates is highly dependent on the applied Lyapunov candidate
and show two different candidates in comparison. A rigorous
analysis conducted here evaluates the relation between the
regularization of the weights, the obtained errors, and the number
of sampled constraints needed to implement stability. Addition-
ally, it is demonstrated that the approach generates smooth and
accurate motions in several experiments including also a kines-
thetic teaching scenario with the humanoid robot iCub. Before we
conclude this work in Section 5, we discuss the main features of
this approach in Section 4.
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Fig. 1. Schematic view of the proposed approach to learn vector fields. The learning
is separated into two main steps: (i) predefine a proper Lyapunov candidate
through parameter optimization and (ii) use this function to sample inequality
constraints that are implemented by a quadratic program learning the data and (iii)
add constraints to restrict the motion to stay in the defined workspace. The
resulting dynamical system approximates the data and is asymptotically stable in
the defined workspace after learning.
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Fig. 2. ELM with its three layer structure used in an integration loop. Only the read-
out weights are trained.

2. Extreme learning machine for estimation of vector fields

We consider trajectory data that are driven by time indepen-
dent vector fields:

Xel2, 1)

where a state variable x(t) e 2 = R? at time t € R with dimension-
ality d defines a state trajectory in the workspace £2. It is assumed
that the vector field v(x) is nonlinear and continuous with a single
asymptotically stable point attractor x* with v(x*)=0 in £2. The
limit of each trajectory in £2 thus satisfies:

tlim X(t) =x*: ¥x(0) € 2. 2)

X =V(X),

The key question of this paper is how to learn v as a function of
X by using demonstrations for training and ensure its asymptotic
stability at target x* in (2. The estimate is denoted by V in
the following. The evolution of motion can then be computed
by numerical integration of X =V (Xx), where x(0) € £2 denotes the
starting point of the motion.

Consider the neural architecture depicted in Fig. 2 for estima-
tion of v. The figure shows a single hidden layer feed-forward
neural network: X € R? denotes the input, h e R¥ the hidden, and
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