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a b s t r a c t

Approximate matrix factorization techniques with both nonnegativity and orthogonality constraints,
referred to as orthogonal nonnegative matrix factorization (ONMF), have been recently introduced and
shown to work remarkably well for clustering tasks such as document classification. In this paper, we
introduce two new methods to solve ONMF. First, we show mathematical equivalence between ONMF
and a weighted variant of spherical k-means, from which we derive our first method, a simple EM-like
algorithm. This also allows us to determine when ONMF should be preferred to k-means and spherical
k-means. Our second method is based on an augmented Lagrangian approach. Standard ONMF
algorithms typically enforce nonnegativity for their iterates while trying to achieve orthogonality at
the limit (e.g., using a proper penalization term or a suitably chosen search direction). Our method works
the opposite way: orthogonality is strictly imposed at each step while nonnegativity is asymptotically
obtained, using a quadratic penalty. Finally, we show that the two proposed approaches compare
favorably with standard ONMF algorithms on synthetic, text and image data sets.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider the orthogonal nonnegative matrix factorization
(ONMF) problem, which can be formulated as follows. Given an
m-by-n nonnegative matrix M and a factorization rank k (with
kon), solve

min
UARm�k ;VARk�n

jjM�UV jj2F ð1aÞ

subject to UZ0; VZ0; ð1bÞ

VVT ¼ Ik; ð1cÞ
where J � JF denotes the Frobenius norm, (1b) means that the
entries of matrices U and V are nonnegative, and Ik stands for the
k� k identity matrix.

The ONMF problem (1) can be viewed as the well-known
nonnegative matrix factorization (NMF) problem, (1a) and (1b),
with an additional orthogonality constraint, (1c), that considerably
modifies the nature of the problem. In particular, it is readily seen
that constraints (1b) and (1c) imply that V has at most one
nonzero entry in each column; we let ij denote the index of the
nonzero entry (if any) in column j of V. Therefore, any solution
ðUn;VnÞ of (1) has the following property: for j¼1,…,n, index ij is
such that column ij of Un achieves the smallest angle with column j
of data matrix M, while Vnðij; jÞ scales column ij of Un to make it as
close as possible to column j of M (in the sense of the Euclidean
norm). Hence it is clear that the ONMF problem relates to data
clustering and, indeed, empirical evidence suggests that the
additional orthogonality constraint (1c) can improve clustering
performance compared to standard NMF or k-means [7,20].

Current approaches to ONMF problems are based on suitable
modifications of the algorithms developed for the original NMF
problem. They enforce nonnegativity of the iterates at each step,
and strive to attain orthogonality at the limit (but never attain
exactly orthogonal solutions). This can be done using a proper
penalization term [10], a projection matrix formulation [20] or by
choosing a suitable search direction [7]. Note that, for a given data
matrix M, different methods may converge to different pairs
(U,V), where the objective function (1a) may take different values.
Furthermore, under random initialization, which is used by most
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NMF algorithms [5], two runs of the samemethodmay yield different
results. This situation is due to the multimodal nature of the ONMF
problem (1)—it may have multiple local minima—along with the
inability of practical methods to guarantee more than convergence
to local, possibly nonglobal, minimizers. Hence, ONMF methods not
only differ in their computational cost, but also in the quality of the
clustering encoded in the returned pair (U,V) for a given problem.

In this paper, we first show the equivalence of ONMF with a
weighted variant of spherical k-means, which leads us to design an
EM-like algorithm for ONMF. We also explain in which situations
ONMF should be preferred to k-means and spherical k-means.
Then, we propose a new ONMF method, dubbed ONP-MF, that
relies on a strategy reversal: instead of enforcing nonnegativity of
the iterates at each step and striving to attain orthogonality at the
limit, ONP-MF enforces orthogonality of its iterates while obtain-
ing nonnegativity at the limit. A resulting advantage of ONP-MF is
that rows of factor V can be initialized directly with the right
singular vectors ofM (which is the optimal solution of the problem
without the nonnegativity constraints), whereas the other meth-
ods require a prior alteration of the singular vectors to make them
nonnegative [5]. We show that, on some clustering problems, the
new algorithm outperforms other clustering methods, including
ONMF-based methods, in terms of clustering quality.

The paper is organized as follows. In Section 2, we analyze the
relationship between ONMF and clustering problems and show that
it is closely related to spherical k-means. Based on this analysis, we
develop an EM-like algorithm which features a rank-one NMF
problem at its core. This also allows us to shed some light on the
differences among k-means, spherical k-means and ONMF, which
we illustrate on synthetic data sets. Section 3 introduces another
algorithm to perform ONMF using an augmented Lagrangian and a
projected gradient scheme, which enforce orthogonality at each step
while obtaining nonnegativity at the limit. Finally, in Section 4, we
experimentally show that our two new approaches perform com-
petitively with standard ONMF algorithms on text data sets and on
different image decomposition problems.

This paper is an extended version of the proceedings paper [18].

2. Equivalence of ONMF with a weighted variant of
spherical k-means

In this section, we briefly recall how NMF with an additional
constraint is equivalent to a fundamental clustering technique (see Eq.
(c1)): Euclidean k-means [8,9]. We then observe that relaxing this
constraint leads to (1c) and (1d), that is, ONMF, which is therefore not
exactly equivalent to k-means but rather to another problem closely
related to spherical k-means [2]. More precisely, ONMF is equivalent
to weighted spherical k-means in a particular metric, see Theorem 1.
Based on this analysis, we propose a new EM-like algorithm to solve
ONMF problems, highlight the differences among k-means, spherical
k-means and ONMF, and illustrate these results on synthetic data sets.

2.1. Equivalence with Euclidean k-means

Let M¼ ðm1;…;mnÞARm�n
þ be a nonnegative data matrix whose

columns represent a set of n points fmjgnj ¼ 1ARm
þ . Solving the

clustering problem means finding a set fπigki ¼ 1 of k disjoint clusters:

πiDf1;2;…;ng 8 i; ⋃
1r irk

πi ¼ f1;2;…;ng;

and

πi \ πj ¼ |; 8 ia j;

such that each cluster πi contains objects as similar as possible
to each other according to some quantitative criterion. When
choosing the Euclidean distance, we obtain the k-means problem,

which can be formulated as follows [8]:

min
fπigki ¼ 1

∑
k

i ¼ 1
∑
jAπi

Jmj�ci J2;

where ci ¼∑jAπi
mj=jπij are the cluster centroids. Equivalently, we

can define a binary cluster indicator matrix BAf0;1gk�n as follows:

B¼ fbijgk�n where bij ¼ 1 ⟺ jAπi:

Disjointness of clusters πi means that rows of B are orthogonal,
i.e., BBT is diagonal. Therefore we can normalize them to obtain
an orthogonal matrix V ¼ fvijgk�n ¼ ðBBT Þ�1=2B (a weighted cluster
indicator matrix) which satisfies the following condition: There
exists a set of clusters fπigki ¼ 1 such that

vij ¼
1ffiffiffiffiffiffiffiffijπij

p if jAπi;

0 otherwise:

8<
: ðc1Þ

It has been shown in [9] that the NMF problem with matrix V
satisfying condition (c1)

min
UZ0;VZ0

JM�UV J2F s:t: V satisfies ðc1Þ; ð2Þ

is equivalent to k-means. In fact, since V in problem (2) is a
normalized indicator matrix which satisfies vij ¼ jπij�1=2 ⟺ jAπi,
we have

JM�UV J2F ¼ ∑
n

j ¼ 1
mj� ∑

k

i ¼ 1
uivij

����
����
2

¼ ∑
k

i ¼ 1
∑
jAπi

Jmj�uivij J2

¼ ∑
k

i ¼ 1
∑
jAπi

mj�ui
1ffiffiffiffiffiffiffiffijπij

p
����

����
2

;

which implies that, at optimality, each column ui of U must
correspond (up to a multiplicative factor) to a cluster centroid with
ui ¼

ffiffiffiffiffiffiffiffijπij
p

ci ¼∑jAπi
mj=

ffiffiffiffiffiffiffiffijπij
p 8 i¼ 1;…; k.

2.2. ONMF and a weighted variant of spherical k-means

Let us now define a condition weaker than (c1):

VVT ¼ Ik and VZ0: ðc2Þ
It can be easily checked that ðc1Þ ) ðc2Þ while ðc2Þ⇏ðc1Þ. The
difference between conditions (c1) and (c2) is that condition (c2)
does not require the rows of V to have their nonzero entries equal
to each other. Now, if we only impose the weaker condition (c2)
on NMF, we obtain a relaxed version of (2) which, by definition,
corresponds to orthogonal NMF:

min
UZ0;VZ0

JM�UV J2F such that VVT ¼ Ik: ð3Þ

In the following, we show the equivalence of problem (3) with a
particular weighted variant of the spherical k-means problem:

Theorem 1. For a nonnegative data matrix MARm�n
þ , the ONMF

problem (3) is equivalent to the following weighted variant of spherical
k-means

max
fπi ;ui ARm

þ ;jjui jj2 ¼ 1gki ¼ 1

∑
k

i ¼ 1
∑
jAπi

Jmj J2
mT

j

Jmj J
ui

 !2

; ð4Þ

where fπigki ¼ 1 is a set of disjoint clusters.

Proof. The claim is that (3) and (4) are equivalent, i.e., a solution of
(3) is obtained from a solution of (4) by means of elementary
arithmetic operations, and vice-versa.

First, without loss of generality, we assume that k is sufficiently
small so that the solutions U of (3) do not have vanishing columns.

F. Pompili et al. / Neurocomputing 141 (2014) 15–2516



Download English Version:

https://daneshyari.com/en/article/406606

Download Persian Version:

https://daneshyari.com/article/406606

Daneshyari.com

https://daneshyari.com/en/article/406606
https://daneshyari.com/article/406606
https://daneshyari.com

