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a b s t r a c t

Blind audio source separation is well-suited for the application of unsupervised techniques such as nonnegative
matrix factorization (NMF). It has been shown that on simple examples, it retrieves sensible solutions even in
the single-channel setting, which is highly ill-posed. However, it is nowwidely accepted that NMF alone cannot
solve single-channel source separation, for real world audio signals. Several proposals have appeared recently
for systems that allow the user to control the output of NMF, by specifying additional equality constraints on the
coefficients of the sources in the time-frequency domain. In this article, we show that matrix factorization
problems involving these constraints can be formulated as convex problems, using the nuclear norm as a low-
rank inducing penalty. We propose to solve the resulting nonsmooth convex formulation using a simple
subgradient algorithm. Numerical experiments confirm that the nuclear norm penalty allows the recovery of
(approximately) low-rank solutions that satisfy the additional user-imposed constraints. Moreover, for a given
computational budget,we show that this algorithmmatches the performance or even outperforms state-of-the-
art NMF methods in terms of the quality of the estimated sources.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Single-channel source separation is an underdetermined pro-
blem, commonly used as a pre-processing technique for higher-
level tasks (speech recognition in complex environments, polypho-
nic music transcription, etc.). While exact source recovery cannot be
expected in general, a key ingredient in source separation techni-
ques consists in assuming some form of redundancy in the data,
which renders the problem overdetermined. This is typically done
by representing audio tracks in the time-frequency domain as low-
rank matrices. Nonnegative matrix factorization was first applied to
audio signals for polyphonic transcription [24], although it was
already used in other fields [21,15].

An important idea underlying matrix factorization techniques for
audio signals is that they recover a representation of signals in terms
of template signals modulated by location-dependent gains. In the
field of music signal processing, this idea was supported by experi-
ments on simple music signals [6]. In computer vision, similar
experiments suggested that a part-based representation of visual

objects could be retrieved by NMF [15]. The miracle of part-based
representation no longer works for real music or speech signals,
because they cannot be assumed to satisfy the low-rank hypothesis,
but it has spawned several interesting research tracks: parameterized
templates were introduced in [27] in order to match the harmonic
structure of many musical instruments; probabilistic models and
penalty functions to favor smooth time-varying gains in [30,8];
Markov models, to stabilize the recognition of vowels in speech
processing [16].

In parallel to these research tracks, linear models for audio signals
have also been the subject of many contributions. These models rely
on the library approach (or dictionary approach), where audio
templates correspond to actual signals stored offline in libraries, each
specific to an instrument. The University of Iowa's electronic music
studios, for instance, have made available recordings of isolated notes
for many popular instruments: violin, piano, cello, more generally
instruments belonging to the family of woodwind, brass, or string
instruments. Due to the large size of the libraries, there are many ways
to represent any audio signals as a linear combination of audio
templates. Thus, in the library approach, structured decompositions
are introduced, based on simple principles: if an instrument is present
in the mix, only a few of its templates should be used at the same time
[26]; in the case where the sources are unknown group structures are
employed to select the appropriate libraries [4].

More recently, several contributions have been made to take into
account prior information specific to the target mix signal: manual
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segmentation of audio tracks [19], MIDI aligned music scores [10,11],
time-aligned pitch estimates for the singing voice [5]. A common
trait of these methods is that they are all based on a simple extension
of NMF: annotations are used to specify equality constraints in the
matrix of activation coefficients in NMF, setting them to known
values. Thus, annotations help learn a source specific dictionary on
segments of the recording where only that source is active: in this
way, manual segmentation of audio signals allows a blind source
separation task to be cast as a supervised linear model. In [10], prior
information consists in the score that the music follows. Digital
music synthesizers are used to provide a rough guess of the sources.
All these contributions are now identified as the category of informed
source separation methods. The formulation proposed in this article
belongs to this category.

While time segmentation of audio signals allows us to use
supervised learning techniques, it is not always applicable. Instead,
one can always rely on a universal property of natural signals: they
have a very sparse representation in the time–frequency domain.
This property, dubbed W-disjoint orthogonality, is at the heart of
several source separation techniques in the multiple microphone
setting [31,1].

In a previous contribution [14], we formulated a problem of
nonnegative matrix factorization (NMF) with additional equality
constraints, consistently with the strong tradition in audio source
separation. Results on the SISEC database showed that we can obtain
state-of-the-art results while annotating only a fraction of the
spectrogram; since user annotation is difficult and time-consuming,
we also experimented with automatic annotation methods, relying
on supervised learning. Interaction with the user has been further
explored in [3,7]. Although based on a slightly different technique,
called probabilistic latent component analysis (PLCA), the formula-
tion used in [3] can be viewed as NMF where dissimilarity between
observations and the model is measured with a Kullback–Leibler
divergence.

While it gives satisfactory results, NMF is hard to solve: for
typical values of the “rank” parameter used in audio, algorithms
cannot be guaranteed to converge to globally optimal solutions, and
there is no alternative but to resort to algorithms that converge to
local minima. In practice, this means that several initial points
should be tried and the best be selected on a principled basis. One
would be tempted to replace the strict low-rank constraint by a
convex penalty function favoring low-rank solutions.

The main contribution of this paper is to show that we can
replace NMF by a matrix approximation problem involving non-
negativity constraints, low-rank inducing penalty functions and
constraints on the coefficients of the solutions to model additional
information provided by the user, i.e. annotations. The main
advantage of such a formulation is that one can borrow tools
from the field of convex optimization to construct algorithms
that retrieve source estimates of similar if not better quality, for
a comparable computational budget, as shown in preliminary
results [13]. In this paper, we give a detailed presentation of a
subgradient algorithm used to solve the proposed formulation,
and show that it has the desired effect of finding solutions that are
(approximately) low-rank. Our second contribution, which we
detail in Section 5.1, is related to the way we let the user specify
annotations: by restricting the set of annotated time-frequency
coefficients to those whose target values are zero, we show that
our formulation can gain robustness, at a small sacrifice in terms
of generality.

The rest of this paper is organized as follows: in Section 2, we
review of well-established techniques for single-channel source
separation: time–frequency transforms, filtering techniques for
source estimates recovery, and evaluation metrics. In Section 3,
we introduce a formulation of informed source separation using
nonnegative matrix factorization which was previously proposed

[14]. In Section 3.2, we discuss a convex formulation of annotation-
informed source separation, dubbed AISS_lownuc, in the form of a
low-rank matrix approximation problem with a low-rank inducing
penalty term, and equality constraints. User-provided annotations
are encoded as equality constraints, and those are key to the success
of our formulation. After presenting in Section 4 our algorithm for
AISS_lownuc, we investigate in Section 5 the impact of various
choices of annotations, and demonstrate the benefits of our convex
formulation compared with NMF.

2. Time–frequency analysis and audio source separation

This section is a brief introduction to audio source separation.
In Section 2.1, we present time–frequency transforms, which
allow to transform a one-dimensional audio signal into a two-
dimensional object, frequency and time being now the dimensions
of variation. The matrix factorization problem that we introduce is
indeed posed in the time–frequency domain, so that an input
time–frequency matrix is separated as a sum of matrices, which
are interpreted as source terms (as illustrated in Fig. 3). We refer
the reader to textbooks such as [20] for a complete presentation of
time–frequency transforms and their many applications, such as
modifying the duration of an audio signal of modifying its pitch.

Next, we explain in Section 2.2 how to transform those source
estimates back as audio signals, using time–frequency masking:
early proposals for source separation recognized filtering as the
best way to avoid artifacts due to inexact solutions [24,6]. In
Section 2.3, we summarize evaluation metrics for audio source
separation [28], and define the notion of oracle estimates, in
controlled experiments where the true source signals are known
in advance.

2.1. Time–frequency representation of audio signals

Single-channel source separation consists in recovering a certain
number of unknown source signals from measurements of their sum.
The first step in single-channel source separation consist in finding a
representation of the source signals that enhances their redundancy.
As we shall explain in this section, this is done by computing their
spectrogram, which is a time–frequency representation. Time–fre-
quency representations of audio signals are sparse and redundant,
which is key to the success of blind source separation.

The computation of spectrograms is illustrated in Fig. 1: short
time segments are extracted from the signal and multiplied
coefficientwise by a window function. Successive windows overlap
by a fraction of their length, which is usually taken as 50%. On each
of these segments, a Fourier transform is computed. Thus, from
a one-dimensional signal xART , we obtain a complex matrix C of
size F � N where FNC2T (because of the 50% overlap between
windows). These preliminary steps correspond to computing the
short time Fourier transform (STFT):

Cfn ¼ ∑
F

t ¼ 1
xtþðn�1ÞHwt exp �2ðf �1Þπðt�1Þ

F

� �

for all f Af1…Fg, and nAf1…Ng. The so-called hop size H deter-
mines the overlap between successive windows, wARF is a
window function, and N is chosen to match the size of the signal.
To make this possible, the signal should be appropriately zero-
padded beforehand. We refer the reader to textbooks such as [20]
for more explanations. Finally, we take Yfn ¼ jCfnj2, in order to
obtain approximate invariance to translations of the signal. Coeffi-
cient Yfn measures the amount of energy of the signal at frequency
f and time index n in the time–frequency plane. This magnitude is
represented as a color code in Fig. 1: blue for small coefficients,
and red for high coefficients.
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