
Learning long-term dependencies in segmented-memory recurrent
neural networks with backpropagation of error

Stefan Glüge a,b,n, Ronald Böck a, Günther Palm c, Andreas Wendemuth a

a Faculty of Electrical Engineering and Information Technology, Cognitive Systems Group, Otto von Guericke University Magdeburg and
Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany
b School of Life Science and Facility Management, Institute of Applied Simulation, Zurich University of Applied Sciences,
Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland
c Faculty of Computer Science, Institute of Neural Information Processing, Ulm University, 89069 Ulm, Germany

a r t i c l e i n f o

Article history:
Received 25 June 2013
Received in revised form
23 September 2013
Accepted 8 November 2013
Available online 8 April 2014

Keywords:
Recurrent neural networks
Segmented-memory recurrent neural
network
Vanishing gradient problem
Long-term dependencies
Unsupervised pre-training

a b s t r a c t

In general, recurrent neural networks have difficulties in learning long-term dependencies. The
segmented-memory recurrent neural network (SMRNN) architecture together with the extended real-
time recurrent learning (eRTRL) algorithm was proposed to circumvent this problem. Due to its
computational complexity eRTRL becomes impractical with increasing network size. Therefore, we
introduce the less complex extended backpropagation through time (eBPTT) for SMRNN together with a
layer-local unsupervised pre-training procedure. A comparison on the information latching problem
showed that eRTRL is better able to handle the latching of information over longer periods of time, even
though eBPTT guaranteed a better generalisation when training was successful. Further, pre-training
significantly improved the ability to learn long-term dependencies with eBPTT. Therefore, the proposed
eBPTT algorithm is suited for tasks that require big networks where eRTRL is impractical. The pre-
training procedure itself is independent of the supervised learning algorithm and can improve learning
in SMRNN in general.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Conventional recurrent neural networks (RNNs) have difficulties
in modelling the so-called long-term dependencies, i.e., learning a
relationship between inputs that may be separated over several time
steps. Since the mid-1990s a lot of research effort was put on the
investigation of this problem, e.g., [1–6]. Usually recurrent networks
are trained with a gradient based learning algorithm like back-
propagation through time (BPTT) [7] and real-time recurrent learning
(RTRL) [8]. Bengio et al. [1] and Hochreiter [9] found that the error
gradient vanishes when it is propagated back through time and back
through the network, respectively. There are basically two ways to
circumvent this vanishing gradient problem. One possibility is to use
learning algorithms that simply do not use gradient information, e.g.,
simulated annealing [1], cellular genetic algorithms [10] and the
expectation-maximisation algorithm [11]. Alternatively, a variety of
network architectures were suggested to tackle the vanishing gra-
dient problem, e.g., second-order recurrent neural network [12], non-
linear autoregressive model with exogenous inputs recurrent neural

network (NARX) [3,13], hierarchical recurrent neural network [2], long
short-term memory (LSTM) network [14], anticipation model [15],
echo state network [16,17], latched recurrent neural network [5],
recurrent multiscale network [18,19], modified distributed adaptive
control (DAC) architecture [20], and segmented-memory recurrent
neural network (SMRNN) [6,21].

Encouraging results with SMRNN have been reported on the
problem of emotion recognition from speech [22] and protein
secondary structure (PSS) prediction [6,21]. In [6] it was shown
that SMRNN performs competitive to LSTM on an artificial bench-
mark problem (two-sequence problem). Further, bidirectional
SMRNN outperforms bidirectional LSTM networks on PSS predic-
tion. The SMRNN training is essentially gradient descent. There-
fore, it does not get rid of the vanishing gradients, but attenuates
the problem. A comprehensive discussion on the effect of the
segmented memory is given in [6].

This paper addresses the gradient based training of SMRNNs.
Basically, the architecture fractionates long sequences into seg-
ments. Then, these segments form the final sequence if connected
in series. Such procedure can be observed in human memorisation
of long sequences, e.g., for phone numbers.

So far, SMRNNs are trained with an extended real-time recurrent
learning (eRTRL) algorithm [6]. The underlying RTRL algorithm has

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2013.11.043
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: stefan.gluege@zhaw.ch (S. Glüge).

Neurocomputing 141 (2014) 54–64

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.11.043
http://dx.doi.org/10.1016/j.neucom.2013.11.043
http://dx.doi.org/10.1016/j.neucom.2013.11.043
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.043&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.043&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.043&domain=pdf
mailto:stefan.gluege@zhaw.ch
http://dx.doi.org/10.1016/j.neucom.2013.11.043


an average time complexity in the order of magnitude Oðn4Þ, with n
denoting the number of network units in a fully connected network
[23]. Because of this complexity, the algorithm is often inefficient in
practical applications where considerably big networks are used,
as the time consuming training prohibits a complete parameter
search for the optimal number of hidden units, learning rate, and
so forth.

In this paper we adapt BPTT for SMRNNs, calling it extended
backpropagation through time (eBPTT). Compared to RTRL, the
underlying BPTT algorithm has a much smaller time complexity
of Oðn2Þ [23]. We compared both algorithms on a benchmark
problem designed to test the network's ability to store information
for a certain period of time. In comparison to eRTRL we found
eBPTT being less capable to learn the latching of information
for longer periods of time. However, those networks that were
trained successfully with eBPTT showed a better generalisation
than eRTRL, i.e., higher accuracy on the test set. In a second step,
we show that an unsupervised layer-local pre-training improves
eBPTT's ability to learn long-term dependencies significantly
preserving the good generalisation performance. This is further
accompanied by experimental results and a discussion concerning
the effect of the pre-training and different weight initialisation
techniques.

The remainder of the paper is organised as follows. Section 2
introduces the SMRNN architecture together with the eBPTT
training algorithm. Further, the layer-local pre-training procedure
is described and the information latching benchmark problem is
introduced. Following this, Section 3 provides experimental results
on the benchmark problem for eRTRL and eBPTT training. Further,
randomly initialised and pre-trained networks with subsequent
supervised eBPTT training are tested. Additionally, we investigate
the effect of the pre-training and alternative weight initialisation
procedures. Finally, the results are discussed in Section 4 and some
concluding remarks on future work are given in Section 5.

2. Methods

2.1. Segmented-memory recurrent neural network

The basic limitation of gradient descent learning for the weight
optimisation in recurrent networks led to the development of
alternative network architectures. One particular approach is the
segmented-memory recurrent neural network (SMRNN) architec-
ture proposed in [21]. From a cognitive science perspective, the
idea has the pleasant property that it is inspired by the memor-
isation process of long sequences, as it is observed in humans.
Usually people fractionate sequences into segments to ease
memorisation. Afterwards, the single segments are combined to
form the final sequence. For instance, telephone numbers are
broken into segments of two or three digits, such that 7214789
becomes 72 - 14 - 789. This behaviour is not just plausible from
everyday life, but evident in studies in the field of experimental
psychology [24–28].

The SMRNN architecture mimics this behaviour. It consists
of two simple recurrent networks (SRNs) [29] arranged in a
hierarchical fashion as illustrated in Fig. 1. A sequence of inputs
is presented to the network symbol by symbol, i.e., input vector
by input vector. Separate internal states store the symbol level
context (short-term information) as well as the segment level
context (long-term information). The symbol level state xðtÞ is
updated for each input uðtÞ, while the segment level state yðtÞ is
updated at the end of a segment.

In the following the receiver–sender-notation is used to
describe the processing in the network. The upper indices of the
weight matrices refer to the corresponding layer and the lower

indices to the single units. For example, Wki
xu denotes the connec-

tion between the kth unit in hidden layer 1 ðxÞ and the ith unit in
the input layer ðuÞ (cf. Fig. 1). Moreover, f is the transfer function of
the network's units, and nu, nx, ny, and nz are the number of units
in the input, hidden 1, hidden 2, and output layers respectively.

The introduction of the parameter d on segment level distin-
guishes a cascade of SRNs from an SMRNN. It denotes the length of
a segment which can be fixed or variable. The processing of an
input sequence starts with the initial symbol level state xð0Þ and
segment level state yð0Þ. At the beginning of a segment (segment
head¼SH) xðtÞ is updated with xð0Þ and input uðtÞ. On other
positions xðtÞ is obtained from its previous state xðt�1Þ and input
uðtÞ. It is calculated by

xkðtÞ ¼
f ∑

nx

j
Wxx

kj xjð0Þþ∑
nu

i
Wxu

ki uiðtÞ
 !

if t ¼ SH

f ∑
nx

j
Wxx

kj xjðt�1Þþ∑
nu

i
Wxu

ki uiðtÞ
 !

else;

8>>>>><
>>>>>:

ð1Þ

where k¼ 1;…;nx. The segment level state yðtÞ keeps its value
during the processing of a segment and is updated at the end of
each segment (segment tail¼ST):

ykðtÞ ¼
f ∑

ny

j
Wyy

kj yjðt�1Þþ∑
nx

i
Wyx

ki xiðtÞ
 !

if t ¼ ST

ykðt�1Þ else;

8>><
>>: ð2Þ

where k¼ 1;…;ny. The network output is obtained by forwarding
the segment level state:

zkðtÞ ¼ f ∑
ny

j
Wzy

kj yjðtÞ
 !

with k¼ 1;…;nz: ð3Þ

While the symbol level is updated on a symbol by symbol basis,
the segment level changes only after d symbols. At the end of the
input sequence the segment level state is forwarded to the output
layer to generate the final output. The dynamics of an SMRNN
processing a sequence is shown in Fig. 2.

Concerning the segment length d for a sequence of length T the
SMRNN turns into a recurrent network with multiple hidden
layers if d4T . For d¼1 one gets a recurrent network with multiple
hidden layers and multiple feedback connections. The advantage
of a segmented memory and the slower vanishing gradient occurs
only if 1odoT . In other words, the length of the interval d affects
the performance of an SMRNN. If it is too small or too large it fails
to bridge long time lags. Obviously, the optimal value for d is task-
dependent, so the choice depends on a priori knowledge of the
typical time lag size [6].

Input layer

Output layer

Segment
level

Symbol
level

Fig. 1. SMRNN topology – two SRNs are arranged hierarchically. The parameter d
on segment level makes the difference between a cascade of SRNs and an SMRNN.
Only after a segment of length d the segment level state is updated.

S. Glüge et al. / Neurocomputing 141 (2014) 54–64 55



Download English Version:

https://daneshyari.com/en/article/406610

Download Persian Version:

https://daneshyari.com/article/406610

Daneshyari.com

https://daneshyari.com/en/article/406610
https://daneshyari.com/article/406610
https://daneshyari.com

