
Training and making calculations with mixed order hyper-networks

Kevin Swingler n, Leslie S. Smith
Division of Computing Science, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom

a r t i c l e i n f o

Article history:
Received 14 June 2013
Received in revised form
7 October 2013
Accepted 27 November 2013
Available online 8 April 2014

Keywords:
High order neural networks
Optimisation
Walsh functions

a b s t r a c t

A neural network with mixed order weights, n neurons and a modified Hebbian learning rule can
learn any function f : f�1;1gn-R and reproduce its output as the network's energy function. The
network weights are equal to Walsh coefficients, the fixed point attractors are local maxima in the
function, and partial sums across the weights of the network calculate averages for hyperplanes through
the function. If the network is trained on data sampled from a distribution, then marginal and
conditional probability calculations may be made and samples from the distribution generated
from the network. These qualities make the network ideal for optimisation fitness function modelling
and make the relationships amongst variables explicit in a way that architectures such as the MLP
do not.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Function approximation lies at the heart of much of computa-
tional intelligence research. Many neural networks can be
viewed as function approximators. It can be desirable to build a
neural function approximator (NFA) that reproduces the output of
any function and allows a transparent analysis of the weights.
Where the function is a probability mass function (PMF), it is
desirable to have a NFA that allows the calculation of marginal,
joint, composite, and conditional probabilities as well as providing
a method for sampling from the underlying joint distribution.
Where the NFA is to be used as an aid to search and optimisation, it
is useful if it is capable of producing output values that are outside
the range of its experience and of modelling local optima as basins
of attraction.

Many different neural network architectures exist and many
possess one or more of the qualities listed above. Traditionally,
artificial neural networks contain weights that connect neurons in
pairs (i.e. second order weights). Perceptrons and multilayer
perceptrons (MLPs) are commonly used as function approximators,
but they do not allow for output values that are greater than those
seen during training and local optima are not easy to analyse as
attractors in energy space. Hopfield networks [8] and Boltzmann
machines [1] encode attractors to local minima in energy space but
are not generally used as function approximators. With the excep-
tion that some networks have a bias weight which could be

considered to be of first order as it only connects to one live neuron,
these networks contain only second order weights. There has been
some interest in higher order networks — those with weights that
connect more than two neurons. For example, [10] investigated high
order MLPs, [4] investigated high order Hopfield like networks for
optimisation and [13] presented a higher order associative memory.

This paper presents a neural network with high order weights,
the Mixed Order Hyper-Network (MOHN) with an analysis of its
capabilities. Additionally, a new learning rule is presented which
allows the MOHN to act as either a content addressable memory,
much like a high order Hopfield network, or a function approx-
imator for functions f : f�1;1gn-R. Local maxima in the function
output are attractor states in the network and can produce output
values that are higher than any seen during training. An analysis of
the weights of the network is presented, which inspires a new
method for calculating average values across hyper-planes in the
input space. The network can also be trained to represent prob-
ability mass functions (PMFs), where the hyper-plane method can
be used to calculate marginal, conditional and composite prob-
abilities. These probability calculations allow a method of sampling
from the underlying joint distribution.

This paper is organised as follows. Section 2 introduces the
notation to be used and the concept of a schema as a definition of
partially defined vector. Section 3 describes the structure of a
MOHN, introduces the learning rule and describes the calculation
of function outputs and various probabilities. Section 4 describes
an algorithm for sampling from a learned distribution and Section
5 describes the process of climbing to attractor states (or sampling
from local optima). An analysis of the weights of the resulting
network is given in Section 6. The body of the paper concerns

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2013.11.041
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: kms@cs.stir.ac.uk (K. Swingler), lss@cs.stir.ac.uk (L.S. Smith).

Neurocomputing 141 (2014) 65–75

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.11.041
http://dx.doi.org/10.1016/j.neucom.2013.11.041
http://dx.doi.org/10.1016/j.neucom.2013.11.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.041&domain=pdf
mailto:kms@cs.stir.ac.uk
mailto:lss@cs.stir.ac.uk
http://dx.doi.org/10.1016/j.neucom.2013.11.041

networks that are fully connected or trained on a full sample of the
function to be learned. Section 6.4 introduces partial networks and
is followed by some conclusions.

2. Functions, vectors, variables and schemata

The MOHN under consideration here is designed to learn
functions that map a binary vector to a real valued output. That is,

f : f�1;1gn-R ð1Þ
Input vectors are written as x and output values as y.

2.1. Schemata

It is also necessary to define sub-vectors which indicate that
some of the variables in x have been set and some have not (or
have unknown values, or may take any value). These sub-vectors
are called schemata and are defined over f�1;1; ngn where n

denotes an unknown value or wildcard. Schemata define a set of
possible instantiations of all the variables in x. For example,
ð1; nÞ ¼ fð1; �1Þ; ð1;1Þg.

2.1.1. Intersections of schemata
The intersection (logical AND, denoted \) of a number of

schemata produces a new schema that is the intersection of the
possible instantiations of their respective sets. For example,
1n \ n1¼ fð1; �1Þ; ð1;1Þg \ fð�1;1Þ; ð1;1Þg ¼ ð1;1Þ. If H is a set of
non-contradictory schemata, then the intersection of the members
of H is a single schema built by setting known values from any
schema in H and leaving the rest unknown. For example,
ð1; n; n; nÞ \ ð1;n; n; �1Þ \ ðn; n;1; nÞ ¼ ð1; n;1; �1Þ. The function
table for \ across two variables is given in Table 1. Note that ∅
indicates the empty set.

The intersection of a set of schemata is defined formally as follows.
Let H be a set where hj; j¼ 1…m, are individual schemata and
hj;i; i¼ 1…n, represents the ith variable in hj. The intersection of the
ith variable across all H is gi ¼⋂m

j ¼ 1hj;i. This can be used to create a
single schema, g, which represents the intersection of all the schemata
in H. Each gi is calculated separately using the following equation:

gi ¼

∅ if (j(k hj;iahk;i4hj;ian4hk;ian

1 if 8 j hj;iAf1; ng4(j hj;i ¼ 1
�1 if 8 j hj;iAf�1; ng4(j hj;i ¼ �1
n if 8 j hj;i ¼ n

8>>>><
>>>>:

ð2Þ

or, more legibly,

gi ¼
∅ if any two values at position i are known and different
hiAf�1;1g if there are known values and they are all the same
n if none of the values are known

8><
>:

ð3Þ

Two schemata are contradictory if they disagree on any known
value. The intersection of contradictory schemata is an empty set,
for example ðn;1Þ \ ðn; �1Þ ¼∅ and if any gi ¼∅ then g’∅.

2.1.2. Unions of schemata
The union (logical OR, denoted [) of a set of schemata is the

union of all the possible instantiations of each schema in the set.
For example, ð1; nÞ [ðn;1Þ ¼ fð1;1Þ; ð1; �1Þg [fð1;1Þ; ð�1;1Þg ¼
fð�1;1Þ; ð1; �1Þ; ð1;1Þg. There is no way to represent a union of
schemata in a single schema as there is for an intersection. Section
3.3.3 describes a method for computing the composite probability
of a union of schemata without always needing to enumerate each
member of the set.

3. MOHN structure, neurons, weights and naming

A MOHN has a fixed number of neurons, n. Each neuron can be
in one of three states: uiAf�1;1;0g where a value of 0 indicates a
wild card or unknown value (the n in the schemata described in
Section 2.1). The state of the network is defined by a vector, u of n
binary variables representing the neurons' outputs:

u¼ un�1…u0; uiAf�1;1;0g ð4Þ
The neurons are indexed in reverse order so that the right most

neuron is the least significant bit in a binary word. This produces
the weight and neuron subset indexing method described below.
Take the neurons as a set, N so that the power set of N, Q ¼PðNÞ
defines every possible subset of neurons. A single neuron subset,
Qk; kAf0…2n�1g has its contents defined by the index, k, which is
calculated by constructing a binary string containing a 1 at every
position i where uiAQk and a 0 elsewhere and converting that
string to an integer using standard position coding. That is,

k¼ ∑
i:ui AQk

2i ð5Þ

The structure of a MOHN is defined by a set, W of real valued
weights. The index of a weight, 0rkr2n�1, is an integer value
determined by the indices of the neurons to which the weight is
connected in the same way as a neuron subset index is calculated.
That is, weight Wk connects the neurons in subset Qk. The weights
of any given network are a subset of all 2n possible weights for a
network of size n. In this way the weights define a hyper-graph
connecting the elements of u:

WDfWj : j¼ 0…2n�1g; WjAR ð6Þ

As noted, there is a mapping between the subsets in Q and the
weights in W. There are times in what follows when it is necessary to
refer not to the weights or the neuron subsets, but to the indices
that define them. For this the function XðSÞ is used, which produces a
set containing the indices of the given set. For example,
XðfW0;W2;W5gÞ ¼ f0;2;5g. This provides a mapping between neuron
subsets and weights, allowing Qi : iAXðWÞ to mean the subset of
neuron subsets that correspond to the weights in the set W. A fully
connected network has a single weight for every possible neuron
subset, so XðWÞ ¼ XðQ Þ. A partially connected network has weights
between a subset of the neuron subsets, that is XðWÞ � XðQ Þ.

The weights each have an associated order, defined by the
number of neurons they connect. There is a single zero-order
weight, which connects no neurons, but has a weight all the same.
There are n first order weights and n corresponding first order
neuron subsets, which are, of course, the n neurons of the network.
The first order weights are the equivalent of bias inputs in a
standard neural network. In general, there are ðnkÞ weights of order
k in a fully connected network of size n.

Table 1
Function table for mixing schema variables with AND ð\Þ. Each variable in a schema
may be processed independently to build the result.

gi hi gi \ hi

�1 1 ∅
1 �1 ∅

�1 �1 �1
1 1 1

�1 n �1
n �1 �1
1 n 1

n 1 1
n n n

K. Swingler, L.S. Smith / Neurocomputing 141 (2014) 65–7566

Download English Version:

https://daneshyari.com/en/article/406611

Download Persian Version:

https://daneshyari.com/article/406611

Daneshyari.com

https://daneshyari.com/en/article/406611
https://daneshyari.com/article/406611
https://daneshyari.com

