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a b s t r a c t

In this paper we present a novel approach to model perceptual grouping based on phase and frequency
synchronization in a network of coupled Kuramoto oscillators. Transferring the grouping concept from
the Competitive Layer Model (CLM) to a network of Kuramoto oscillators, we preserve the excellent
grouping capabilities of the CLM, while dramatically improving the convergence rate, robustness to
noise, and computational performance, which is verified in a series of artificial grouping experiments
and with real-world data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The ability to robustly group related perceptual items to form
higher-order concepts is crucial for many cognitive tasks. Exploit-
ing the recurrent dynamics of neurons, the Competitive Layer
Model (CLM) [1] has proven to solve a broad spectrum of complex
grouping tasks in a very robust fashion – even in the presence of
strong noise. Among others, these tasks include segmentation of
cell images [2], grouping of object contours in edge images [3], as
well as motion segmentation [4]. However, a major drawback of
the CLM for real-world applications, is its high demand for
computational resources: the network converges slowly and each
update step is costly. Furthermore, the network can only hardly
escape from a reached optimum, when the underlying grouping
dynamics is changed.

Hence, inspired by the fast synchronization ability of coupled
oscillator networks [5–7], we transfer the grouping principles of
the CLM to a network of Kuramoto oscillators [5] in order to
improve the computational performance. In the presented model,
each oscillator represents a distinct input feature from an arbitrary
feature domain. The coupling strengths between the oscillators are
based on the compatibility of the corresponding features. Similar
features have a positive compatibility causing the corresponding
oscillators to phase-lock and thus form a perceptual group.
Conversely, dissimilar features induce negative couplings causing
a repelling of oscillator phases.

The Kuramoto model has been investigated in many variations.
It was shown that large enough positive couplings between
oscillators induce a phase synchronization where the oscillators
converge towards a mean phase. This critical coupling strength to
achieve synchrony has been heavily investigated. For example the
authors in [8] derived a lower bound of the required coupling
strength and validated their results in simulations. The authors in
[9] examined a network having both, positive and negative
couplings, and discovered not only that the positively connected
proportion of oscillators phase-lock, but also that the remaining
negatively coupled oscillators shift into an state of opposing phase.

In [10], the synchronization properties of the Kuramoto model
were exploited to find strongly coupled communities in graph
structures. By introducing a correlation measurement based on the
cosine similarity among the phases of oscillator pairs, they were
able to identify community structures by analyzing oscillator
correlations over time. Building on this correlation measure, the
authors in [11] were able to trace the formation of communities
over time in real world graph structures like social networks.

The use of coupled oscillator networks to solve segmentation
tasks has been exhaustively studied, with one of the most
prominent examples being the LEGION model [12]. This model
uses a combination of local excitatory and global inhibitory
couplings of relaxation oscillators. To determine clusters of related
features, the model also employs the correlation of oscillator
phases. The model has been adapted and extended along various
dimensions. In [13], the authors use a LEGION based oscillator
network to extract the most salient features from input images,
whereas [14] extends the model with excitatory and inhibitory
shortcuts, relaxing the original coupling topology which overall
boosts the synchronization process. Besides the domain of image
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processing, the model was for example successfully used to
separate speech from background noise in [15].

Using a network with diffusely connected FitzHugh–Nagumo
oscillators, the system presented in [16] was able to solve various
clustering and segmentation tasks on artificial datasets and in
real-world images. Exploiting chaotic Rössler oscillators, Breve
et al. [17] were able to increase the discrimination sensitivity of
oscillator clusters in order to better distinguish multiple objects
within a scene for an object selection task.

In the following sections, we shortly outline the principles of
the CLM and introduce our approach to transfer them to a network
of coupled Kuramoto oscillators. Particularly, we augment existing
models with a frequency dynamics boosting the synchronization
process and avoiding the costly phase-correlation analysis to
determine oscillator clusters. In Section 4, both approaches are
evaluated with artificial data and with regard to the grouping
quality, convergence speed and perturbations in the presence of
increasing levels of noisy connections. In the ensuing section, we
exploit properties of the Kuramoto model to gain insights into the
behavior of the oscillator network during grouping tasks. Section 6
presents an extension of the oscillator model, which allows a more
robust handling of spurious input features. Subsequently, this
extension is evaluated within a texture grouping task and com-
pared to the basic model. Finally, the results are discussed.

2. The CLM for perceptual grouping

The CLM consists of N � L neurons which are arranged in L
layers. Neurons are indexed columnwise with m¼ 1;…;N describ-
ing the position in each layer and α¼ 1;…; L denoting the layer
index. A single neuron's activity is therefore denoted as xm;α . The
neurons in each layer are coupled with a symmetric interaction
function f ðvm; vnÞ ¼ f ðvn; vmÞ ¼ f m;n which describes the compat-
ibility between two features vm and vn. They are additionally
coupled with a winner-takes-all (WTA) circuit in each column to
assure that only one neuron in each column becomes active.
Combining the lateral interaction and columnar WTA circuit, the
recurrent CLM dynamics can be written as

_xm;α ¼ �xm;αþs J 1� ∑
L

β ¼ 1
xm;β

 !
þ ∑

N

n ¼ 1
f m;nxn;α

 !
: ð1Þ

Here Jð1�∑βxm;βÞ represents the WTA competition weighted by
the constant J, and sðxÞ ¼maxð0; xÞ is a linear threshold function.
The lateral interaction is expressed as ∑nf m;nxn;α, which calculates
the support for the feature at position m from all other features n
in a given layer α. A graphical representation of the Competitive
Layer Model is shown in Fig. 1(a). For a more comprehensive
overview, we refer to [3].

3. Transfer to network of coupled Kuramoto oscillators

The oscillator model replaces each CLM column – composed
from L neurons representing the grouping result for a given
feature vm – with a single oscillator of the Kuramoto type [5].
The original Kuramoto model describes a set of oscillators Om,
where an oscillator is described by its phase θm and a frequency
ωm. In this model, ωm is drawn from a random distribution and
the phase θm evolves according to the update equation

_θm ¼ωmþK
N

∑
N

n ¼ 1
sin ðθn�θmÞ ð2Þ

where K is a global coupling constant that controls the strength of
the phase-locking of oscillators [18]. If K is too small, the network
does not synchronize and remains in a chaotic state. Transferring

the idea of feature-dependent coupling strengths from the CLM
model to the Kuramoto model, we also employ individual coupling
strengths determined by the symmetric matrix Mm;n � f ðvm; vnÞ,
such that the strength of synchronization of features will correlate
with the strength of feature compatibility. This results in the
following, slightly adapted phase update rule, also known as a
hierarchical Kuramoto model [19]:

_θm ¼ωmþK
N

∑
N

n ¼ 1
f ðvm; vnÞ � sin ðθn�θmÞ: ð3Þ

Notice the similarity of ∑f � sin to the appropriate sum in Eq. (1).
While in the original CLM model the sum measures the support of
all neurons n¼ 1…N to the neuron m, in the Kuramoto model it
measures the drive to adapt the phase of oscillator m based on the
weighted phase-asynchrony (the sine term) to all oscillators.

The interaction function f is limited to the interval ½�1;1�, where
�1 and þ1 represent strongest dissimilarity and similarity of
features respectively. Negative couplings among dissimilar features
assure a large phase spread, as pointed out in [9]. Assuming, that
several features group into clusters, such that intra-cluster couplings
are significantly stronger than inter-cluster couplings, the oscillator
network will naturally form corresponding clusters of phase-
synchronized oscillators as can be seen from Fig. 9(e). Phases
corresponding to different clusters tend to separate as far as possible.

The authors in [10] introduced a correlation measure
ρmn ¼ 〈 cos ðθn�θmÞ〉 based on the cosine similarity of oscillator
phases. Using this measure, they were able to trace the formation
of clusters, also called communities, of similar nodes in graphs
composed of Kuramoto oscillators. However, due to a continuous
drift – induced by the oscillator frequencies ωm – an evaluation
and tracking of the grouping result over time is costly and prone to
noise in the input data. Also, a threshold would be required to
decide whether the correlation among oscillators is strong enough
to be interpreted as a cluster. This threshold has to be chosen
depending on the grouping task.

To overcome this drawback, we augment the phase dynamics
by a frequency dynamics limiting oscillator frequencies to discrete
values (inspired by the layered CLM architecture), thus facilitating
the evaluation of the grouping result. More concretely, oscillator
frequencies are limited to discrete values ωα ¼ α �ω0, where
αAf1;…; Lg denotes the group index – following the CLM notation
where α denotes the group/layer index. To achieve an association
of similar features to the same discrete frequency level ωα , the
frequency ωm of each oscillator is adapted employing the cosine
similarity between the phases of the oscillators, which is mapped
to the interval ½0;1� to preserve the sign of the coupling strengths
f ðvm; vnÞ. The oscillator is then assigned to the frequency from
which it gains the most support SmðαÞ. Hence, the frequencies are
updated according to:

SmðαÞ ¼ ∑
nAN ðαÞ

f m;n �
1
2
ð cos ðθn�θmÞþ1Þ

ωm ¼ω0 � argmax
α

ðSmðαÞÞ ð4Þ

Here, N ðαÞ denotes the set of oscillators with frequency index α,
i.e. forming the current perceptual group indexed by α. This
update rule associates the oscillator m to the group N ðαÞ of
oscillators, which most strongly supports the mth oscillator (based
on strength-weighted synchrony of phases). Hence, it ensures that
oscillators representing similar features will both phase-lock and
frequency-lock. The grouping result is then readily read from the
assigned indices α. Eq. (4) also boosts the phase-locking process,
because synchronized phases do not tend to desynchronize any-
more due to randomly assigned frequencies. Contrarily, oscillators
representing dissimilar features will spread both in phase and
frequency.
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