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a b s t r a c t

We discuss several approaches that make possible for kernel methods to deal with missing values for
binary variables. The first two are extended kernels able to handle missing values without data
preprocessing methods. Another two methods are derived from a sophisticated multiple imputation
technique involving logistic regression as local model learner. The performance of these approaches is
compared using a binary data set that arises typically in microbiology (the microbial source tracking
problem). We also address approaches to the largely neglected problem of prediction with missing
values. Our results show that the kernel extensions demonstrate competitive performance in compar-
ison with multiple imputation in terms of predictive accuracy. However, these results are achieved with
a simpler and deterministic methodology and entail a much lower computational effort.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modern modelling problems are difficult for a number of reasons,
including the challenge of dealing with a significant amount of missing
information. Kernel methods have won great popularity as a reliable
machine learning tool; in particular, Support Vector Machines (SVMs)
are kernel-based methods that are used for tasks such as classification
and regression, among others [1]. The kernel function is a very flexible
container to express knowledge about the problem as well as to
capture the meaningful relations in input space.

Some classical modelling methods – like Naïve Bayes and CART
decision trees – are able to deal with missing values in a rather natural
way. However, the process of optimizing an SVM assumes that
the training data set is complete. There is a plethora of methods for
dealing with missing values as a preprocessing step – see, e.g., [2] for
a review. When present, missing values almost always represent a
serious problem because they force to preprocess the dataset and
a good deal of effort is normally put in this part of the modelling. In
order to process such datasets with kernel methods, an imputation
procedure is then deemed a necessary but demanding step.

The aim of this paper is to examine and compare a number of
approaches to handle missing values for binary variables with kernel
methods. Specifically, we present two methods that extend a kernel
function in the presence of missing values and hence handle missing
values directly. We also investigate two different uses of the well
established multiple imputation method. These four approaches are
used to analyze a fecal source pollution dataset presenting several
challenges: it is a multi-class, small sample size problem plagued by
missing values. All four have slightly better cross-validated accuracies
than the best model suggested so far; additionally, they are all able to
make predictions for unseen incomplete observations. This enables
the deployment of the learned models in real scenarios.

2. Preliminaries

Missing data arises in many statistical analyses nowadays.
Absent information can be categorized as missing at random or
by forms of selective loss [3]. For a particular variable with missing
entries, the values are said to be Missing Completely at Random
(MCAR) if the probability that a variable is missing is independent
of the variable itself and any other external influences (e.g., other
variables). Another type of random loss is Missing at Random
(MAR), in which the probability of missing data on a specific
variable is unrelated to the values of that variable but the pattern
of missingness is predictable from other variables. In this case, the
precise variables where data is missing are not the cause of the
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incomplete data. In contrast, in the Not Missing at Random (NMAR)
case, the missing variable cannot be predicted only from the
available variables in the dataset. In other words, the pattern of
data missingness may be non-random and depend on the missing
variable itself. If the missing data is NMAR, valuable information is
lost from the data and there is no general method for handling this
situation properly [4]. MCAR is a particular case of MAR; when data
are MCAR or MAR, the missing data mechanism is termed ignor-
able. In this situation, the reasons for the missing data can be
overlooked to a greater extent, thereby facilitating data analysis.

Missing information is difficult to handle, specially when the
lost parts are of significant size. Three possible ways to deal with
missing data are:

1. discard all observations (or variables) with missing values,
2. impute (that is, guess) the missing values, and
3. extend the learner to accept incomplete observations.

Deleting instances and/or variables containing missing values
results in loss of relevant data and is also frustrating because of the
effort in collecting the sacrificed information. Imputation methods
entail inferring values for the missing entries [3,5]. A growing number
of studies recommend the use of multiple imputation – e.g. [6].
Compared to classical imputation, which imputes a single value,
multiple imputation produces several values to fill the missing entries.
These methods are independent of the learning algorithm and hence
their impact on the learning process is uncertain. Recent work for
SVMs includes the development of a standard SVM classifier replacing
the set of linear constraints by a probabilistic one, considering the
missing variables as random variables drawn from a multivariate
Gaussian distribution, in which the parameters are estimated with the
Expectation-Maximization (EM) algorithm [7]. A different approach
tackles the problem by defining a modified risk that incorporates
uncertainty in the inputs (due to the missing values) into a convex
optimization task; this is carried out by defining a probabilistic model
for the missing data [8]. It should be noted that these are rather
complex approaches, and limited in the sense that they are applicable
to SVMs (not necessarily for general kernel methods).

2.1. Binary variables

In statistics, binary data is used to represent the outcomes of
Bernoulli trials. Additionally, in regression analysis, binary data is often
generated as dummy or indicator variables to signal the absence or
presence of different categorical traits. These are used frequently in
time series analysis and qualitative data applications, such as eco-
nomic forecasting, bio-medical studies or credit scoring, among others
[9]. Recent interest in binary (or Boolean) variables includes feature
selection methods with missing data [10].

A binary variable can be conveniently expressed as taking one of
the two values fv1; v2g, with probabilities Pðv1Þ and Pðv2Þ ¼ 1�Pðv1Þ.
These values typically stand for the presence or absence of a feature.
The term dichotomous is sometimes reserved for features that are
either present or absent but whose absence in both of a pair of
observations does not count as a match. In the data analysis literature
there are many similarity measures defined on collections of binary
variables. This is mostly due to the uncertainty over how to accom-
modate negative (i.e. absence–absence) matches – see e.g. [11].

2.2. First kernel extension

The first kernel extension is obtained by wrapping a known
kernel around a probability distribution [12]:

Theorem 2.1. Let the symbol X denote a missing element, for which
only equality is defined. Let k : X � X-R be a symmetric kernel in X

and P a probability mass function (PMF) in X. Then the function
kX ðx; yÞ given by

kX ðx; yÞ ¼

kðx; yÞ if x; yaX ;

gðxÞ ¼ ∑
y0 AX

Pðy0Þkðx; y0Þ if xaX and y¼X ;

gðyÞ ¼ ∑
x0 AX

Pðx0Þkðx0; yÞ if x¼X and yaX ;

G¼ ∑
x0 AX

Pðx0Þ ∑
y0 AX

Pðy0Þkðx0; y0Þ if x¼ y¼X

8>>>>>>>><
>>>>>>>>:

is a kernel in X [ fXg.
For the particular case of binary variables x; yAfv1; v2g, a

convenient approach is to define the kernel:

k0=1ðx; yÞ ¼ Ifx ¼ yg ð1Þ
where

Ifzg ¼
1 if z is true
0 if z is false:

�

Now kX0=1ðv;X Þ ¼ gðvÞ ¼∑v0 A fv1 ;v2gPðv0Þk0=1ðv; v0Þ ¼ PðvÞ and kX0=1
ðX ;X Þ ¼∑vA fv1 ;v2gPðvÞgðvÞ ¼ ðPðv1ÞÞ2þðPðv2ÞÞ2. Note that this is
independent of the representation chosen for the binary values
(‘þ ’ or ‘� ’, ‘true’ or ‘false’, ‘1’ or ‘0’, etc). Note also that, if P is not a
degenerate PMF – i.e., Pðv1ÞAð0;1Þ – then GAð0;1Þ. Obviously, g(v)
is maximum for vn ¼ arg maxvA fv1 ;v2gfPðvÞg. This makes sense
because if an observation takes on the most probable value, then
we can expect a high similarity to other observations. The value of
G is minimum (1/2) when the two probabilities are equal (and
equal to 1/2) and approaches the maximum value of 1 when one of
the probabilities approaches 0 or 1.

Consider now x; yAfv1; v2gd. When we apply (2.1) to the kernel
in (1), we obtain the extended multivariate kernel:

K1ðx; yÞ ¼
1
d

∑
d

i ¼ 1

1 if xi; yiaX ;

PiðxiÞ if xiaX and yi ¼X ;

PiðyiÞ if xi ¼X and yiaX ;

ðPðvi1ÞÞ2þðPðvi2ÞÞ2 if xi ¼ yi ¼X ;

0; otherwise

8>>>>>><
>>>>>>:

ð2Þ

where Piðvi1Þ; Piðvi2Þ are the probabilities for binary variable i,
giðvÞ ¼ PiðvÞ and Gi ¼ ðPðvi1ÞÞ2þðPðvi2ÞÞ2. Intuitively, when xi is not
missing but yi is, the probability that yi takes the value xi is
precisely PiðxiÞ – in which case the kernel should be 1 for this
variable; otherwise the kernel should be 0; therefore the kernel
approximates the unknown comparison by its expected value. To
understand the case Gi, proceed as follows: suppose the value of xi
is vi1 – something that happens with probability Piðvi1Þ; then the
kernel should be Piðvi1Þ; analogously for the value of xi being vi2;
the result follows since these are exhaustive and mutually exclu-
sive events.

The kernel in (2) is a generalization of the classical simple
matching coefficient, initially proposed by Sokal and Michener for
numerical taxonomy [13] and proven positive semi-definite (and
hence a valid kernel) in [14]. This kernel reduces to the simple
matching coefficient when the dataset does not contain any
missing value. As already mentioned, this kernel will be useful
when presence (i.e., v1�v1) matches are as important as absence
(i.e., v2�v2) matches.

Other extended multivariate kernels can be obtained using the
same approach. For example, the following function:

K2ðx; yÞ ¼
1
d

∑
d

i ¼ 1

1 if xi ¼ vi1 and yi ¼ vi1;
Piðxi ¼ vi1Þ � Ifxi ¼ vi1g if xiaX and yi ¼X ;

Piðyi ¼ vi1Þ � Ifyi ¼ vi1g if xi ¼X and yiaX ;

ðPiðvi1ÞÞ2 if xi ¼ yi ¼X ;

0 otherwise

8>>>>>><
>>>>>>:

ð3Þ

L.A. Belanche et al. / Neurocomputing 141 (2014) 110–116 111



Download English Version:

https://daneshyari.com/en/article/406615

Download Persian Version:

https://daneshyari.com/article/406615

Daneshyari.com

https://daneshyari.com/en/article/406615
https://daneshyari.com/article/406615
https://daneshyari.com

