
Linear spectral hashing

Zalán Bodó n, Lehel Csató
Babeş–Bolyai University, Faculty of Mathematics and Computer Science, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

a r t i c l e i n f o

Article history:
Received 27 June 2013
Received in revised form
11 October 2013
Accepted 8 November 2013
Available online 8 April 2014

Keywords:
Nearest-neighbor search
Spectral hashing
Spectral clustering

a b s t r a c t

Spectral hashing assigns binary hash keys to data points. This is accomplished via thresholding the
eigenvectors of the graph Laplacian and obtaining binary codewords. While calculation for inputs in
the training set is straightforward, an intriguing and difficult problem is how to compute the hash
codewords for previously unseen data. For specific problems we propose linear scalar products as
similarity measures and analyze the performance of the algorithm. We implement the linear algorithm
and provide an inductive – generative – formula that leads to a codeword generation method similar to
random hyperplane-based locality-sensitive hashing for a new data point.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years several algorithms were proposed for fast
approximate nearest-neighbor search, providing sub-linear search
times for a query. Introduced by Cover and Hart [1], the k-nearest
neighbor algorithm is one of the most successful and most
investigated methods in the machine learning community. How-
ever, for large datasets it has a serious drawback: it must go
through all the training data to find the nearest neighbors. This
implies a linear time complexity for a single point. The method of
k-nearest neighbors can be used in machine learning to label an
unknown point based on the majority label among the neighbors.
Considering the nearest neighbors of a point, however, is not used
only in machine learning; the properties of the neighbors can be
beneficially utilized to infer supposedly valid facts about the point
in question. Without pretension to completeness, we can mention
important applications in information retrieval, computer vision,
coding theory, recommendation systems, computational geome-
try, etc. [2] Therefore, speeding up the search for nearest neigh-
bors we consider a task of great importance.

One of the first approaches to reduce the number of compar-
isons in finding the nearest-neighbors of a given point was to
store points in a special data structure, a k-d tree [3]. K-d trees
are binary space-partitioning trees, in which every node is a
k-dimensional point, used to hierarchically decompose the space
by hyperplanes along orthogonal dimensions. The main disadvan-
tage of using such data structures lies in its sensibility to

high-dimensional points, in which case a nearest-neighbor search
evaluates most of the points in the tree.

Learned binary embeddings for large datasets, where nearest-
neighbors of a given point needed to be found, are efficient and
powerful tools for indexing these sets. These embeddings are designed
to approximately preserve similarities in the embedding Hamming
space. The beneficial properties of the codewords make possible to use
Hamming distance computations for nearest-neighbor search, by
which the searching process can be substantially sped up: to compute
the Hamming distance of two vectors, a XOR operation has to be
performed between the vectors and the resulting set bits have to be
counted.

We differentiate between two parts of fast nearest-neighbor
search with binary embeddings. The first part consists of generating
the binary codes, and the second part is the actual search-
ing process. The simplest method for determining the nearest-
neighbors is linear scan: calculate the Hamming distance to every
codeword from the database. Although it is a brute-force method,
it is practical even for very large datasets. Semantic hashing [4]
maps binary codes to memory addresses, where at each address
a pointer is stored to a list of points that share the respective
codeword. Querying the neighbors of a point is done by calculating
the hash codeword, flipping some of the bits to obtain the desired
Hamming ball around the query, and taking the points with
these codewords. Another approach is locality-sensitive hashing
(LSH) [5], a randomized framework for generating hash code-
words and searching for nearest-neighbors. It creates a hash table
where similar points will likely to be put in the same bucket or
nearby buckets having a small Hamming distance. Linear scan and
semantic hashing can be used with any codeword generation
method, however, in semantic hashing the codeword length is
limited by the size of the physical memory. LSH provides an
elegant way to control the size of the Hamming ball in the original

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2013.11.039
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: zbodo@cs.ubbcluj.ro (Z. Bodó),

lehel.csato@cs.ubbcluj.ro (L. Csató).

Neurocomputing 141 (2014) 117–123

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.11.039
http://dx.doi.org/10.1016/j.neucom.2013.11.039
http://dx.doi.org/10.1016/j.neucom.2013.11.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.039&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.039&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.11.039&domain=pdf
mailto:zbodo@cs.ubbcluj.ro
mailto:lehel.csato@cs.ubbcluj.ro
http://dx.doi.org/10.1016/j.neucom.2013.11.039


feature space, but choosing an appropriate LSH function limits its
flexibility [6].

One can distinguish between unsupervised, supervised and semi-
supervised codeword generation methods, based on the information
they use to obtain the embedding [6]. Unsupervised methods use
only the information carried by the points themselves. Additional
information can be given to supervised methods in the form of label
information as in a supervised machine learning setting, as well as
giving the neighborhood list for a subset of points, or as paired
constraints – defining the points which ought or ought not cluster
together. Finally, semi-supervised methods exploit the supervised
information, besides which other clustering or regularization appro-
aches are used.

Locality-sensitive hashing with hyperplanes [7] is perhaps the
most popular unsupervised hashing method, generating binary
codewords by taking random vectors as normal vectors of separating
hyperplanes. The hash function is the sign of the dot product
between the data point and the random vectors. In [8] it was
extended to support arbitrary kernels by using a clever method to
generate random vectors in the feature space. Spectral hashing [9]
picks codewords by searching minimum-distance binary hash
sequences between similar points, similarity being defined by an
appropriate proximity matrix. The optimization leads to a clustering
problem, fromwhich it becomes intriguing and difficult to generalize
to new data points. In [9] this is solved using the eigenfunctions of
the weighted Laplace–Beltrami operators, assuming a multidimen-
sional uniform distribution. Shift-invariant kernel-based binary codes
[10] use the random projections of [11] giving a low-dimensional
similarity-preserving representation of points, where similarity is
defined by the kernel. These low-dimensional vectors are then used
to obtain binary codes for hashing. The method is limited to use shift-
invariant (e.g. Gaussian) kernels. Self-taught hashing [12] uses a two-
step approach for codeword generation. The first step consists of the
unsupervised learning of binary codes using a similar objective
function to spectral hashing. To generalize the obtained mappings,
in the second step it considers the set of training examples together
with their labels, obtained in the previous step, and trains a support
vector machine for each bit of the codeword. We also mention
Laplacian co-hashing [13], a hashing method for document retrieval.
It considers the documents and terms a bipartite graph, where a
term is connected to a document if appears in it, and finds binary
codes that best preserves the similarities encoded by the term–

document matrix. It differs from existing methods by simultane-
ously minimizing Hamming distances between document and term
codewords.

Parameter-sensitive hashing [14] is an extension of LSH which
trains classifiers for the individual regression tasks using label
information. In [15] the codeword generation method learns a
parametrization of the Mahalanobis distance, based on the super-
vised information given, and simultaneously encodes the learned
information into randomized hash functions. This approach uses
the hash function family proposed by [7] with generalized dot
products. The embedding proposed in [4] uses multiple layers of
restricted Boltzmann machines to assign efficient binary codes
to documents. The learning process consists of two phases: an
unsupervised pre-training and a supervised fine-tuning of the
weights using label information.

The recently proposed semi-supervised approaches fromworks
[16,17] minimize the empirical error on the labeled training data
and an information theoretic regularizer over both labeled and
unlabeled sets.

Getting supervised information is often a costly process.
Spectral hashing is a successful unsupervised codeword genera-
tion method that learns short binary codewords by minimizing
the codeword distances between similar points. Assuming a
multidimensional uniform distribution is a very limiting factor,

however, spectral hashing performs surprisingly well in practice
on a large variety of data. Furthermore, in the original formulation
of the method the Gaussian kernel is used, which is not well-
suited for specific problems.

In this paper we propose another method for computing the
hash codewords for previously unseen points using the linear
kernel. The codeword is obtained by computing the dot product of
the new vector with a set of precomputed vectors and threshold-
ing the resulting values at zero. The vectors output by the method
are normal vectors of maximum-margin separating hyperplanes.
Fig. 1 illustrates our method, hashing three-dimensional points to
two dimensions.

The structure of the paper is as follows: Section 2 presents
spectral clustering in general. It presents normalized spectral
clustering and its generalization using maximum-margin separat-
ing hyperplanes. After presenting spectral hashing in Section 3, the
maximum-margin formulation is used in Section 4 to derive a
new algorithm for computing the codewords of new data points.
Sections 5 and 6 describe our experiments and discuss the results,
respectively.

2. Spectral clustering and max-margin hyperplanes

2.1. Spectral clustering

In spectral clustering [18] – one of the most successful clustering
algorithms – partitioning is done using the minimum cut in the
neighborhood graph, where minimum cut is defined as removing
edges such that the graph is partitioned into disconnected sub-
graphs with minimal sum of edges, ∑iAA;jAAWij, where A and A
denotes the clusters, V is the entire vertex set, A [ A ¼ V , and Wij is
the proximity of the i-th and j-th examples.

The sum of edges alone as an objective function favors
unbalanced and small clusters. To overcome this problem, normal-
ized cut was introduced [19], where instead of considering only
the sum of weights, the ratio of the sum of weights between
partitions and the sum of weights to all the nodes from the
partitions is taken, that is

∑iAA;jAAWij

∑iAA;vAVWiv
þ

∑iAA;jAAWij

∑jAA ;vAVWjv
ð1Þ

The above formulation of spectral clustering considers only binary
partitioning, but the problem can be extended to support multiple

5

10

15

20

1012141618

6

8

10

12

14

16

x

y

z

Fig. 1. Points sampled from three multivariate Gaussians and their hashing to two
dimensions performed using linear spectral hashing.

Z. Bodó, L. Csató / Neurocomputing 141 (2014) 117–123118



Download English Version:

https://daneshyari.com/en/article/406616

Download Persian Version:

https://daneshyari.com/article/406616

Daneshyari.com

https://daneshyari.com/en/article/406616
https://daneshyari.com/article/406616
https://daneshyari.com

