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a b s t r a c t

This paper considers a class of stochastic Hopfield type neural networks with time-varying delays. Based
on the architecture of neural networks, expectations are introduced into coefficients of the model we
considered. By applying the M-matrix technique, the mean square exponential stability is studied. An
example is provided to illustrate the effectiveness of our results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The neural network proposed by Hopfield in 1980s can be
described by an ordinary differential equation of the form

Ci
dxiðtÞ
dt

¼ � 1
Ri
xiðtÞþ ∑

n

j ¼ 1
TijgjðxjðtÞÞþ Ii; 1r irn

where xi(t) denotes the voltage on the input of the ith neuron; Ci
denotes the neuron input electric capacity; Ri denotes the neuron
transmission resistance; Tij denotes the interconnected synaptic
character between neurons and Ii denotes the external input
electric current to the ith neuron.

After decades, research on Hopfield neural networks has
advanced greatly. Taking stochastic disturbances and time delays
into consideration are two important aspects of improvements in
Hopfield neural networks. As pointed out by Haykin [1] that in real
nervous systems, synaptic transmission is a noisy process brought
on by random fluctuations from the release of neurotransmitters
and other probabilistic causes. On the other hand, time delays are
unavoidable in hardware implementation, due to the finite switch-
ing speed of amplifiers or finite speed of information processing,
and the existence of time delays may lead to oscillation, diver-
gence, and even instability in network systems [2]. It is therefore
reasonable to consider stochastic neural networks with time
delays. Some results related to this problem have been published,
for example, see [3–14].

First, we give a typical form of stochastic Hopfield neural networks
with delays, which is also a special case of the neural network models
considered in our previous work[15]:

dxðtÞ ¼ ½�BxðtÞþAgðyðtÞÞ� dtþsðt; xðtÞ; yðtÞÞ dwðtÞ; ð1:1Þ
where B¼ diagðb1; b2;…; bnÞ with bi40 ð1r irnÞ and AARn�n;

yðtÞ ¼ ðy1ðtÞ; y2ðtÞ;…; ynðtÞÞT; yiðtÞ ¼ xiðt�δiðtÞÞ ð1r irnÞ ð1:2Þ
where δiðtÞ ð1r irnÞ are variable delays. w(t) is an m-dimensional
Brownian motion. In the following, we will improve this model by
adding expectations.

Psychophysical experiments and analysis of the data given by a
linear neuronal model showed that it is reasonable to investigate
mechanism of expectation on probabilistic stimuli [16]. The results
suggest that the expectation is held by synaptic weight of the
neuron and the neural mechanism controlling saccade based on
expectation consists of two pathways working in parallel. One
facilitates saccades based on expectation. The other executes
saccades in response to the saccade signal. Also, [17] pointed out
that a neuron is connected to one another. There is a real number
associated with each connection, which is called the weight of the
connection. A neuron in the output layer determines its activity by
a two step procedure. First, it computes the total weighted input xi,
using the formula: xi ¼∑n

j ¼ 1yjpji, where yj is the activity level of
the ith neuron in the previous layer and pji is the weight of the
connection between the ith and the jth neuron. Hence, we may
introduce expectation ExiðtÞ into model (1.1) to describe this
process. Next, the neuron calculates the activity yi by using the
sigmoid function of the total weighted input, and then the
activities of all output units can be determined. The second step
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is described by the term AgðyðtÞÞ. However, we know that Hopfield
neural networks are recurrent, that is, the output of any layer
affects that same layer, so the output perhaps becomes the input.
Hence, we take its weight EyðtÞ into consideration. Then we
investigate the following stochastic neural networks in this paper:

dxðtÞ ¼ ½�BxðtÞþAgðyðtÞÞþRExðtÞþSEyðtÞ� dt
þsðt; xðtÞ; yðtÞ; ExðtÞ; EyðtÞÞ dwðtÞ: ð1:3Þ

Let xðtÞ ð�τrto1Þ be a solution to Eq. (1.3) with τ¼maxiδið0Þ. ξ is
the initial data of x(t) which means that xðθÞ ¼ ξðθÞ for any θA ½�τ;0�.
We denote xðt; ξÞ the unique solution of Eq. (1.3) with initial data ξ.
Kloeden and Lorenz [18,19] called equations which are similar to
Eq. (1.3) as a class of mean-field stochastic differential where other
sample paths influence the evolution of a sample path of the solution.

Many applications of neural networks are dependent on the
stability. Stability is therefore an important topic when designing
neural networks. In this paper, we focus on the mean square
exponential stability of model (1.3), namely,

lim sup
t-1

t�1 ln EjxðtÞj2r�γ; ð1:4Þ

where γ is a positive constant independent of the initial data. Eq.
(1.4) shows that when t-1, Ex2i ðtÞð1r irnÞ exponentially decays
to zero. Also, we wonder that how the two terms RExðtÞþSEyðtÞ
affect the stability of model (1.3). Roughly stated, our answer is
that: RExðtÞþSEyðtÞ tends to damage the stability of neural
networks. Hence, we can say that to figure out instability pro-
blems, model (1.3) is much better than model (1.1). This also
means that stability results given by model (1.1) may not be
reliable. Model (1.3) perhaps gives more correctly prediction. Our
example in Section 4 will illustrate this phenomenon intuitively.

Methodologically, the semi-martingale convergence theorem
cannot be used anymore, because model (1.3) involves expectations
ExðtÞ and EyðtÞ. Fortunately, we find a method to deal with the
system involving expectations and then obtain our desired results.

2. Preliminaries

For any xARn and Rn-valued function f, we always assume that

x¼ ðx1; x2;…; xnÞT; f ¼ ðf 1; f 2;…; f nÞT;
diagðxÞ ¼ diagðxiÞ ¼ diagðx1; x2;…; xnÞ:

Let τ¼maxiδið0Þ. Denote that function space C ¼ Cð½�τ;0�;RnÞ
with the supremum norm: JξJ ¼ sup�τrθr0jξðθÞjðξACÞ. Let j � j
denote the Euclidean norm of vectors or the trace norm of
matrices. Denote that ΔiðtÞ ¼ t�δiðtÞ ð1r irnÞ. Suppose δiðtÞA
C1ðRþ Þ,
0rδiðtÞrbo1 ðtZ0Þ ð2:1Þ

ηi≔ inf
tZ0

Δ0
iðtÞ40: ð2:2Þ

Eq. (2.2) implies that ηir1 and limt-1ΔiðtÞ ¼1. Obviously, ΔiðtÞ
is strictly increasing on ½0;1Þ, and its inverse function Δ�1

i ðsÞ is
defined on ½�δið0Þ;1Þ, and has property that

½Δ�1
i ðsÞ�0 ¼ 1=Δi

0ðtÞrη�1
i ðs¼ΔiðtÞ; tZ0Þ: ð2:3Þ

Assume that both

gðyÞ : Rn⟶Rn

and

sðt; x; y;u; vÞ : Rþ � Rn � Rn � Rn � Rn⟶Rn�m

are Borel measurable functions and satisfy the local Lipschitz
condition. Write that

f ðx; y;u; vÞ ¼ �BxþAgðyÞþRuþSv; ð2:4Þ

FðtÞ ¼ f ðxðtÞ; yðtÞ; ExðtÞ; EyðtÞÞ; ΣðtÞ ¼sðt; xðtÞ; yðtÞ; ExðtÞ; EyðtÞÞ:
ð2:5Þ

Using (2.5), Eq. (1.3) can be written as

dxðtÞ ¼ FðtÞ dtþΣðtÞ dwðtÞ
or

xðtÞ ¼ xð0Þþ
Z t

0
FðsÞ dsþ

Z t

0
ΣðsÞ dwðsÞ: ð2:6Þ

For any given VðxÞAC2ðRnÞ, tZ0 and x; y;u; vARn, define that

LVðt; x; y;u; vÞ ¼ VxðxÞf ðx; y;u; vÞ
þ1

2 tr½sTðt; x; y;u; vÞVxxðxÞsðt; x; y;u; vÞ�; ð2:7Þ

where f is given by (2.4). If x(t) is a solution to Eq. (1.3), then
applying the Itô formula and (2.7) we have that

dVðxðtÞÞ ¼ LVðxðtÞÞþVxðxðtÞÞΣðtÞ dwðtÞ; ð2:8Þ
where LVðxðtÞÞ ¼LVðt; xðtÞ; yðtÞ; ExðtÞ; EyðtÞÞ with y(t) in (1.2) and
ΣðtÞ in (2.5).

The following lemma is important whose similar form can be
found in [20], so we omit the proof here.

Lemma 2.1. Let xðtÞ ð�τrto1Þ be a solution to Eq. (1.3) with
initial data ξAC, 0rqrε. Suppose that

Φεðx; yÞ ¼ ∑
n

i ¼ 1
∑
L

l ¼ 1
αilðyβl

i �η�1
i ebεxβl

i Þ ðx; yARnÞ ð2:9Þ

where αil and βl ð1r irn;1r lrLÞ are nonnegative constants; b is
given by (2.1) and ηi ð1r irnÞ is given by (2.2). ThenZ t

0
eqsΦεðxðsÞ; yðsÞÞ dsrconst for tZ0:

In this paper, “const” always denotes a positive constant with
different values in different places.

For the convenience of readers, let us cite some useful results
on M-matrices [21].

Definition 2.2. If Q ¼ ½qij�ARn�n satisfies qijr0oqii ðia j; i; j¼
1;2;…;nÞ, and all eigenvalues of Q have positive real parts, then Q
is called an M-matrix.

Denote that Rn
þ þ ¼ fxARn : xi40ð1r irnÞg. We assume that

x⪢03xARn
þ þ .

Lemma 2.3. Let Q ¼ ½qij�ARn�n satisfy qijr0oqii ðia j; i; j¼ 1;
2;…;nÞ. Then the following statements are equivalent:

(i) Q is an M-matrix.
(ii) There exists cARn

þ þ such that Qc⪢0.
(iii) All of the leading principal minors of Q are positive.

Remark 2.4. Lemma 2.3 implies that: (i) if Q is an M-matrix, then
both QT and αQ ðα40Þ are M-matrices; (ii) M-matrix Q remains as
an M-matrix under tiny disturbances if the condition qijr0o
qii ðja i; i; j¼ 1;2;…;nÞ holds. (iii) for any given cARn

þ þ , diagðcÞ is
an M-matrix.

We assume that coefficients of Eq. (1.3) satisfy the following
linear growth conditions:

jgiðyÞjrρijyij; ð2:10Þ

jsiðt; x; y;u; vÞj2r ∑
n

j ¼ 1
ðκijx2j þτijy2j þλiju2

j þμijv
2
j Þ; ð2:11Þ

where tZ0; x; y;u; vARn; ρi; κij; τij; λij and μij are nonnegative
constants with i; j¼ 1;2;…;n; sT ¼ ðs1;s2;…;snÞ with sið1r
irnÞ being Rm�valued functions.
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