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a b s t r a c t

This paper is concerned with stochastic finite-time boundedness analysis for a class of uncertain discrete-time
neural networks with Markovian jump parameters and time-delays. The concepts of stochastic finite-time
stability and stochastic finite-time boundedness are first given for neural networks. Then, applying the
Lyapunov approach and the linear matrix inequality technique, sufficient criteria on stochastic finite-time
boundedness are provided for the class of nominal or uncertain discrete-time neural networks with Markovian
jump parameters and time-delays. It is shown that the derived conditions are characterized in terms of the
solution to these linear matrix inequalities. Finally, numerical examples are included to illustrate the validity of
the presented results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks have received considerable attention due to a
variety of applications, such as signal processing, system recogni-
tion, target tracking, static image processing and associative
memory [1,2]. Meanwhile, the study on time-delay neural net-
works has also received great attention since time-delay is an
inherent feature of many physical processes, such as chemical
processes, nuclear reactors and biological systems, and may lead to
instability or significantly deteriorated performances for the cor-
responding closed-loop systems [3–5]. Many results have been
investigated and studied for various types of neural networks with
time-delays and parameter uncertainties, such as in [6–8] for a
continuous-time case and in [9–12] for a discrete-time case. More
detailed results on neural networks could be found in [13–16] and
the references therein.

On the other hand, Markovian jump systems were referred to
as a special family of hybrid systems and stochastic systems, which
can be applied to describe the real-world systems subject to
random changes in structure and parameters, possibly caused by

phenomena such as component failures, sudden environmental
disturbances, changing subsystem interconnections, and so forth;
see, e.g., [17–22]. As a special class of hybrid neural networks,
Markovian jump neural networks with time-delays have attracted
a lot of research interests in mathematics and control commu-
nities, and many attracting results have been reported in the
literature. For instance, stability analysis was considered in [23,24].
Passivity analysis was discussed in [25], and state estimation was
addressed in [26,27]. It is worth pointing out that classical control
theory focuses mainly on the asymptotic behavior of the systems,
which, as mentioned above, deals with the asymptotic property of
system trajectories over an infinite-time interval and does not
usually specify bounds on the trajectories. In practice, however,
many concerns are practical problems in which the described
system state does not exceed a certain threshold over a given
finite-time interval. In order to handle the transient performance
of control systems, finite-time stability or short-time stability
was introduced in [28]. With the help of the Lyapunov function
approach and linear matrix inequality (LMI) techniques, varieties
of results on finite-time stability, finite-time boundedness and
finite-time stabilization were obtained for continuous- or discrete-
time systems. For instance, the finite-time control problem of
discrete-time linear systems was addressed in [29]. The authors in
[30] studied the finite-time H1 filtering problem for discrete-time
Markovian jump systems. In [31,32], the problem of finite-time
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boundedness was considered for neural networks with Markovian
jumping parameters. For more details of the literature related to
finite-time stability, finite-time boundedness and finite-time H1
control, the reader is referred to [33–38].

However, to date and to the best of our knowledge, finite-time
boundedness analysis of discrete-time time-delay neural networks
with Markovian jumps has not yet been investigated in the literature.
The major contributions of this paper are as follows: (i) by applying
the Lyapunov function approach and the LMI technique, the stochas-
tic finite-time boundedness analysis is presented for discrete-time
neural networks with Markovian jumps and time-varying delays;
(ii) when norm-bounded parameter uncertainties appear in discrete-
time delayed neural networks with Markovian jumps, the robust
stochastic finite-time boundedness criteria are also obtained in terms
of LMIs by using the techniques of the matrix decomposition; (iii) as
a special case, we also derive sufficient conditions of stochastic finite-
time boundedness for uncertain discrete-time neural networks
with Markovian jumps and constant time-delays. Therefore, the
main aim of this paper is to make the first attempt to tackle the
listed contributions.

In this paper, the problem of stochastic finite-time boundedness is
investigated for a class of discrete-time Markovian jump neural
networks with time-delays. The concepts of stochastic finite-time
stability and stochastic finite-time boundedness are first given for
neural networks. Then, sufficient criteria on stochastic finite-time
boundedness are derived for the class of nominal or uncertain
discrete-time neural networks with Markovian jump parameters
and time-delays. The conditions are reduced to LMIs-based feasibility
problems. Finally, numerical examples are presented to show the
effectiveness of the proposed results. The rest of this paper is
organized as follows. Section 2 provides the problem statement and
preliminaries. The main results are provided in Section 3. Numerical
examples are presented in Section 4, and the conclusions are drawn in
Section 5.

Notations: In the paper, Rn, Rn�m and ZkZ0 denote the sets of n
component real vectors, n�m real matrices, and the set of non-
negative integers, respectively. Ef�g denotes the expectation operator
with respect to some probability measure. The superscript T stands
for matrix transposition or vector, the symbol n denotes the
transposed elements in the symmetric positions of a matrix. In
addition, diagð�Þ denotes a block-diagonal matrix and I stands for an
identity matrix of appropriate dimension. Matrices, not specially
stated, are assumed to be compatible for algebraic operations.

2. Problem formulation

Consider the following discrete-time Markovian jump neural
network with time-delays:

xðkþ1Þ ¼ CðrkÞxðkÞþAðrkÞf ðxðkÞÞþBðrkÞf ðxðk�hðkÞÞÞþϖðrkÞ; ð1Þ
where xðkÞ ¼ ½x1ðkÞ; x2ðkÞ;…; xnðkÞ�T ARn is the neuron state vector,
h(k) represents the transmission delay satisfying 0ohmrhðkÞr
hM , where hm and hM are prescribed positive integers representing
the lower and upper bounds of the delay, respectively. f ðxðkÞÞ
¼ ½f 1ðx1ðkÞÞ; f 2ðx2ðkÞÞ;…; f nðxnðkÞÞ�T is the neuron activation func-
tion, and ϖðrkÞ ¼ ½ϖ1ðrkÞ;ϖ2ðrkÞ;…;ϖnðrkÞ�T is a constant external
input vector. CðrkÞ;AðrkÞ and BðrkÞ are coefficient matrices and
satisfy

½CðrkÞ;AðrkÞ;BðrkÞ� ¼ ½CðrkÞ;AðrkÞ;BðrkÞ�
þFðrtÞΔðrk; kÞ½E1ðrkÞ; E2ðrkÞ; E3ðrkÞ�; ð2Þ

where Δðrk; kÞ is an unknown, time-varying matrix function and
satisfies ΔT ðrk; kÞΔðrk; kÞr I for all kAZkZ0. CðrkÞ ¼ diagðc1ðrkÞ;
c2ðrkÞ;…; cnðrkÞÞ is the known mode-dependent diagonal matrix
with jcjðrkÞjo1 ð8 jAf1;2;…;ngÞ. The mode-dependent matrices

AðrkÞ and BðrkÞ are the connection weight matrix and the delayed
connection weight matrix, respectively. FðrtÞ; E1ðrkÞ; E2ðrkÞ and
E3ðrk are known mode-dependent matrices. The matrices are
functions of the stochastic jump process frk; kZ0g, which is a
discrete-time, discrete-state Markov chain taking values in a finite
set Λ¼ f1;2;…; sg with transition probabilities

Prfrkþ1 ¼ jjrk ¼ ig ¼ πij; ð3Þ

where πijZ0 and ∑s
j ¼ 1πij ¼ 1 for all iAΛ.

For notational simplicity, in the sequel, for each possible
rk ¼ i; iAΛ, a matrix MðrkÞ will be denoted by Mi; for instance,
AðrkÞ will be denoted by Ai, BðrkÞ by Bi, and so on. In addition, �Pi

denotes ∑s
j ¼ 1πijPj.

Assumption 1. The neuron state-based nonlinear function f ð�Þ in
(1) is bounded for all a; bARn, aab; satisfying

0r f jðaÞ� f jðbÞ
a�b

rγj; j¼ 1;2;…;n; ð4Þ

where γj is a known real scalar for all j¼ 1;2;…;n.

Note that by using the Brouwers fixed-point theorem, it can be
easily proven that there exists one equilibrium point for the neural
network (1). Assuming that xnðkÞ ¼ ½xn1ðkÞ; xn2ðkÞ;…; xnnðkÞ�T ARn is
the equilibrium point of (1) and using the transformation eðkÞ ¼
xðkÞ�xnðkÞ, the neural network (1) can be converted to the follow-
ing form:

eðkþ1Þ ¼ CðrkÞeðkÞþAðrkÞgðeðkÞÞþBðrkÞgðeðk�hðkÞÞÞ; ð5Þ

where eðkÞ ¼ ½e1ðkÞ; e2ðkÞ;…; enðkÞ�T and gðeðkÞÞ ¼ ½g1ðe1ðkÞÞ; g2ðe2
ðkÞÞ;…; gnðenðkÞÞ�T with gjðejðkÞÞ ¼ f iðejðkÞþxnj ðkÞÞ� f jðxnj ðkÞÞ; j¼ 1;
2;…;n. According to Assumption 1, one can obtain that

gTj ðejðkÞÞgjðejðkÞÞrγ2j ; gjð0Þ ¼ 0; j¼ 1;2;…;n: ð6Þ

The main purpose of this paper is to deal with the problem
of stochastic finite-time boundedness analysis of discrete-time
neural network with time-delays and Markovian jumps. Through-
out the paper, we need the following definitions and lemmas.

Definition 1 (Stochastic finite-time stability). The neural network
(1) with ϖi ¼ 0 is said to be stochastically finite-time stable with
respect to ðδ; ϵ;Ri;NÞ, where 0oδoϵ, Ri40 and NAZkZ0, if

EfxT ðk1ÞRixðk1Þgrδ2 ) EfxT ðk2ÞRixðk2Þgoϵ2;

8 k1Af�hM ;…; �1;0g; 8 k2Af1;2;…;Ng: ð7Þ

Definition 2 (Stochastic finite-time boundedness). The neural net-
work (1) is said to be stochastically finite-time bounded with
respect to ðδ; ϵ;Ri;NÞ, where 0oδoϵ, Ri40 and NAZkZ0, if the
neural network (1) satisfies the constraint condition (7).

Remark 1. It is noted that the concept of stochastic finite-time
boundedness reduces to stochastic finite-time stability if the
external input ϖi ¼ 0 for all iAΛ. Thus, stochastic finite-time
boundedness implies stochastic finite-time stability, but the con-
verse is not true.

Lemma 1 (Zhang et al. [33,35]). For matrices Ω, Φ and Ψ of
appropriate dimensions, where Ω is a symmetric matrix,

ΩþΦΔðkÞΨ þ½ΦΔðkÞΨ �T o0 ð8Þ

holds for all time-varying matrix function ΔðkÞ satisfying ΔT ðkÞ
ΔðkÞr I for all kAZkZ0, if and only if there exists a positive constant
ϵ, such that ΩþϵΦΦT þϵ�1Ψ TΨo0 holds.
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