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a b s t r a c t

Least squares support vector machines (LS-SVMs) are sensitive to outliers or noise in the training
dataset. Weighted least squares support vector machines (WLS-SVMs) can partly overcome this
shortcoming by assigning different weights to different training samples. However, it is a difficult task
for WLS-SVMs to set the weights of the training samples, which greatly influences the robustness of
WLS-SVMs. In order to avoid setting weights, in this paper, a novel robust LS-SVM (RLS-SVM) is
presented based on the truncated least squares loss function for regression and classification with noise.
Based on its equivalent model, we theoretically analyze the reason why the robustness of RLS-SVM is
higher than that of LS-SVMs and WLS-SVMs. In order to solve the proposed RLS-SVM, we propose an
iterative algorithm based on the concave–convex procedure (CCCP) and the Newton algorithm. The
statistical tests of the experimental results conducted on fourteen benchmark regression datasets and
ten benchmark classification datasets show that compared with LS-SVMs, WLS-SVMs and iteratively
reweighted LS-SVM (IRLS-SVM), the proposed RLS-SVM significantly reduces the effect of the noise in
the training dataset and provides superior robustness.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machines (SVMs) are very important methodol-
ogies for classification [1–4] and regression [5–7] in the fields of
pattern recognition and machine learning. It has been widely
applied to many real world pattern recognition problems, such as
text classification [8,9], image classification [10,11], feature extrac-
tion [12–14], web mining [15] and function estimation [16,17].
Based on equality constraints instead of inequality ones, two least
squares support vector machines (LS-SVMs) are proposed for
classification [18,19] and regression [20,21], respectively. Recently,
a matrix pattern based LS-SVM is also presented [22]. The
solutions of LS-SVMs are obtained by solving a set of linear
equations instead of solving a quadratic programming (QP) pro-
blem as in SVM. Several effective numerical algorithms have been
suggested, such as the conjugate gradient based iterative algo-
rithm [19,21,23,24], the reduced set of linear equations based
algorithm [25], the sequential minimal optimization algorithm
(SMO) [26], and the Sherman–Morrison–Woodbury (SMW) iden-
tity based algorithm [27].

At present, LS-SVMs have been widely applied to text classifi-
cation [28], image processing [29–31], time series forecasting

[21,32,33], and control [34–36]. Unfortunately, in real-world
applications, there exist two main drawbacks in LS-SVMs. The
first one is their solutions are non-sparse [37,38] and the second
one is their training processes are sensitive to noise in the training
dataset due to over-fitting [39,40]. In order to deal with the first
problem, some pruning algorithms have been proposed [41–44].
In order to deal with the second problem, two weighted LS-SVMs
(WLS-SVMs) have been presented for regression [45] and classi-
fication [46], respectively. A key issue for WLS-SVMs is how to
assign suitable weights to training samples. In the previous
studies, the weights are assigned to the training samples by a
two-stage method [45,47] and a multi-stage method [48]. Theore-
tical analyses and the related experiments show that WLS-SVMs
are robust to some noise.

In the field of machine learning, robust loss function is usually
one of the key issues in designing a robust algorithm. At present,
various margin-based loss functions, such as squared loss, logistic
loss, hinge loss, exponential loss, 0-1 loss, and brownboost loss,
have been used to search for the optimal classification and
regression functions. From their function curves [49], we know
that squared loss, logistic loss, hinge loss, and exponential loss are
the upper boundary on the generalization error of a 0-1 loss.
When the training sample has a large negative margin, squared
loss, hinge loss and exponential loss are larger than brownboost
loss. Therefore, the brownboost loss is usually more robust than
the other loss functions. Recently, motivated by the link between
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the pinball loss and quantile regression, Huang et al. introduced
the pinball loss to classification problems and proposed the pinball
loss SVM (pin-SVM) [50]. The theoretical analysis and the experi-
mental results show that compared to the hinge loss SVM, the pin-
SVM is less sensitive to the feature noise around the decision
boundary and more stable for re-sampling.

In order to avoid setting the weights of the training samples,
which greatly influence the robustness of WLS-SVMs, in this study,
inspired by the ideas in [51], we propose a novel robust LS-SVM
(RLS-SVM) based on the truncated least squares loss function for
regression and classification with noise. Based on the definition of
influence function [52], we show that the proposed loss function is
insensitive to noise. Considering that the proposed loss function is
neither differentiable nor convex, inspired by [53], we firstly give a
smoothing procedure to make the proposed loss function smooth.
Secondly, using the concave–convex procedure (CCCP) [54], we
transform solving a concave–convex optimization problem into
solving iteratively a series of the convex optimization problems.
Finally, we apply the Newton algorithm [53] to solve these convex
optimization problems. In order to test the robustness of RLS-SVM,
we conduct a set of experiments on four synthetic regression
datasets, fourteen benchmark regression datasets, two synthetic
classification datasets and ten benchmark classification datasets.
In the analysis of the experimental results, the Wilcoxon signed-
ranks test and the Friedman test [55] are used to check the
significant of RLS-SVM.

This paper is organized as follows. In Section 2, we briefly
review LS-SVMs and WLS-SVMs. In Section 3, we propose RLS-
SVM. In Section 4, we theoretically analyze the reason why the
robustness of RLS-SVM is higher than that of LS-SVMs and WLS-
SVMs. An algorithm for RLS-SVM is given based on the CCCP and
the Newton algorithm in Section 5. The experimental results and
analyses are presented in Section 6. Finally, conclusions are given
in Section 7.

2. Least squares support vector machines and weighted least
squares support vector machines

2.1. Least squares support vector machine for regression

Considering a training set of l pairs of samples fxi; yigli ¼ 1 for
regression problem, where xiARn are the input data and yiAR are
the corresponding prediction values, LS-SVM for the regression
problem is a QP problem based on the equality constraints and can
be described in the following [20,21]:

min
w;b;ξ

Jðw;b; ξÞ ¼ 1
2
wTwþC

2
∑
l

i ¼ 1
ξ2i ; ð1Þ

s. t.

yi�½wTφðxiÞþb� ¼ ξi; i¼ 1;⋯; l; ð2Þ

where w is the normal of the hyperplane, ξi is the error of the ith
training sample, φðxiÞ is a nonlinear function that maps xi to a
high-dimensional feature space, C is a regularized parameter
balancing the tradeoff between the margin and the error, and b
is a bias.

The Lagrangian function of the optimization problem (1) and
(2) is

Lðw; b; ξ;αÞ ¼ Jðw; b; ξÞ� ∑
l

i ¼ 1
αifwTφðxiÞþbþξi�yig; ð3Þ

where αi are the Lagrangian multipliers.

The optimal conditions can be written as the following system
of linear equations:

0 eT

e Ωþ I
C

 !
b

α

� �
¼ 0

Y

� �
; ð4Þ

where IARl�l is an identity matrix,

Y¼ ðy1; y2;…; ylÞT ; ð5Þ

α¼ ðα1; α2;…; αlÞT ; ð6Þ

e¼ ð1;1;…;1ÞT ; ð7Þ

Ω¼ ðΩijÞ ¼ ðkðxi; xjÞÞ; ð8Þ

kðxi; xjÞ ¼ 〈φðxiÞ;φðxjÞ〉: ð9Þ

2.2. Weighted least squares support vector machine for regression

WLS-SVM for the regression problem is described in the
following [45]:

min
w;b;ξ

Jðw; b; ξÞ ¼ 1
2
wTwþC

2
∑
l

i ¼ 1
siξ2i ; ð10Þ

s. t.

yi�ðwTφðxiÞþbÞ ¼ ξi; i¼ 1;⋯; l; ð11Þ
where s¼ ðs1; s2;…; slÞ is a vector of weights associated with the
training samples. If sj¼0, one can delete the corresponding
training sample from the model. The optimal dual variables
can be given by the solution of the following system of linear
equations:

0 eT

e Ωþ1
Cdiag

1
s1
; 1s2;…; 1sl

� �0
@

1
A b

α

� �
¼ 0

Y

� �
; ð12Þ

2.3. Least squares support vector machine for binary classification

Considering a training set of l pairs of samples fxi; yigli ¼ 1 for
binary classification, where xiARn are the input data and yiA
f�1; þ1g are the corresponding class labels, LS-SVM for classifica-
tion problem is also a QP problem based on the equality con-
straints and quadratic loss function, and can be described in the
following [18,19]:

min
w;b;ξ

Jðw; b; ξÞ ¼ 1
2
wTwþC

2
∑
l

i ¼ 1
ξ2i ; ð13Þ

s. t.

yiðwTφðxiÞþbÞ ¼ 1�ξi; i¼ 1;⋯; l; ð14Þ

2.4. Weighted least squares support vector machine for binary
classification

WLS-SVM for binary classification is described in the following
[46]:

min
w;b;ξ

Jðw; b; ξÞ ¼ 1
2
wTwþC

2
∑
l

i ¼ 1
siξ2i ; ð15Þ

s. t.

yiðwTφðxiÞþbÞ ¼ 1�ξi; i¼ 1;⋯; l: ð16Þ
Multiplying yi in both sides of (16) yields

yi�ðwTφðxiÞþbÞ ¼ yiξi; i¼ 1;⋯; l: ð17Þ
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