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a b s t r a c t

Effects of asymmetry in a sigmoidal output function of neurons on rotating waves in a ring of neurons
with asymmetric bidirectional coupling and self-coupling were studied. Propagation of wave fronts
in rotating waves failed, i.e., the pinning of rotating waves occurred not only when self-coupling was
excitatory but also when self-coupling was inhibitory, in which there were unsaturated neurons at wave
fronts. Conditions for the pinning of wave fronts were derived by using a piecewise linear output
function. The pinning conditions depended on whether bidirectional coupling was excitatory or
inhibitory in the presence of asymmetry in an output function.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A ring of coupled neurons with sigmoidal input–output rela-
tions, which is referred to as a ring neural network, has attracted
much attention. A sigmoidal neuron is a firing rate model of a
neuron or neural assembly [1–3] and it is widely used in artificial
neural networks. A ring of unidirectionally coupled sigmoidal
neurons can show stable oscillations when the number of inhibi-
tory connections is odd [4]. The oscillations of the states of
neurons are due to a rotating wave propagating in a ring. Such a
ring is qualitatively the same as a ring oscillator, which is a closed
loop of inverters and buffers, and this type of a network is widely
used as a variable-frequency oscillator [5]. Although the struc-
ture of a ring neural network is simple, its properties have been
studied as a basic model of a recurrent neural network [6,7] and
mathematically as a cyclic feedback system [8]. The formation of
spatiotemporal patterns in one-dimensional and two-dimensional
arrays of piecewise linear neurons with local coupling and their
application to signal processing have been studied as a cellular
neural network [9–14]. Further, a lot of work has been carried out
on effects of delays on spatiotemporal patterns in a ring of
sigmoidal neurons, e.g., see references in [15]. Although most of

their studies are restricted to rings of small numbers (from two to
six), studies on rings of general (not specific) numbers of neurons
have been carried out [16–18]. It has been shown that delays cause
long-lasting rotating waves and oscillations in a ring of unidir-
ectionally coupled neurons [19–21]. It has also been shown that
transient rotating waves in a ring with unidirectional coupling are
dynamically metastable even in the absence of delays, i.e. their
duration increases exponentially with the number of neurons [22].
Effects of inertial terms [23], spatiotemporal noise and asymmetry
in a sigmoidal output function of neurons [24] on metastable
dynamical transient rotating waves in a ring of unidirectionally
coupled neurons have then been studied.

Such propagating waves in rings of coupled systems have
drawn a lot of interest in various fields and have been widely
studied. The existence and stability of traveling waves in lattice
dynamical systems and coupled map lattices have been studied
extensively and we just mention some review papers [25–27].
Concerning neural networks, rings of synaptically coupled spiking
neurons have been employed as models of central pattern gen-
erators in the central nervous system, e.g., for early work [28,29].
Then, a lot of work has been carried out on rings of various kinds
of neuron models, e.g., see references in [15,30]. Discrete-time
dynamics of ring neural networks has also been studied [31,32].
Further, wave propagation in a large population of neurons in
the brain, e.g., the cortex, hippocampus and thalamus, have
been examined by neural field models, which are described by
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integro-differential equations with sigmoidal functions of neural
activity; for review [33,34]. Apart from the nervous system and
neural networks, studies on traveling waves as splay-phase syn-
chronized oscillations in rings of coupled nonlinear oscillators (van
der Pol oscillators) date back to [35–37]. Then, a lot of work on
rings of coupled various kinds of oscillators has been carried out in
electronics, physics and biology; for recent work, e.g., overdamped
Duffing oscillators [38,39], the Stuart–Landau oscillators [40–42]
and delayed-feedback optoelectronic oscillators [43]. For example,
rings of chaotic oscillators have been examined in relation to chaos
synchronization. Then, not only periodic rotating waves but also
quasiperiodic, chaotic and hyperchaotic rotating waves have been
observed in rings of unidirectionally coupled Chua's circuits [44–48],
Lorenz systems [44,46,47,49–52] and Duffing oscillators [53].
Transient chaotic rotating waves have also observed in rings of
unidirectionally coupled Bonhoeffer–van der Pol oscillators [54]
and Lorenz systems [55]. Long-lasting metastable dynamical
transient rotating waves, which emerge in a ring of unidirection-
ally coupled sigmoidal neurons as mentioned above, have been
found in rings of unidirectionally coupled various systems: over-
damped Duffing oscillators [56], cubic maps [57], parametric
oscillators [58], Lorenz systems [55] and Bonhoeffer–van der Pol
models [30]. For practical applications, these metastable dynami-
cal rotating waves have been reported in a ring of ferromagnetic
cores [59] and a generalized repressilator model, which is one of
genetic regulatory networks [60,61], as well as traffic jams in a car-
following model for a traffic flow problem [62].

In this paper, we consider a ring of sigmoidal neurons with asym-
metric bidirectional coupling and self-coupling as well as asymmetry
in an output function. We then study conditions for the pinning
(propagation failure) of wave fronts, which seem not to have been
examined. A ring with unidirectional coupling is special structure
and bidirectional coupling and self-coupling are generally included in
neural networks. When bidirectional coupling or self-coupling exists,
the pinning of rotating waves can occur, i.e. the propagation of their
wave fronts fails and rotating waves change into steady states. Such
pinning of wave propagation is commonly seen in spatially discrete
coupled systems [63–68].

When a sigmoidal output function is symmetric and piecewise
linear, conditions for the pinning of wave fronts in the presence of
excitatory (positive) self-coupling have been derived [12,13]. Wave
fronts are pinned when the strength of excitatory self-coupling is
larger than asymmetry in the strength of bidirectional coupling.
Excitatory self-coupling tends to keep the states of neurons
unchanged. Then the stability of steady states increases and wave
fronts are hard to propagate. It has also been shown that the
pinning of rotating waves occurs even when self-coupling is
inhibitory (negative) [15]. Wave fronts in rotating waves and their
pinned states have neurons the sigmoidal output of which is not
saturated, which correspond to steady states obtained for sym-
metric bidirectional coupling [10,12]. Inhibitory self-coupling
tends to change the signs of the states of neurons and thus makes
wave fronts propagate. However, the states of neurons at wave
fronts become unsaturated so that pinning can occur.

Rotating waves, which are caused by qualitatively the same
mechanism as those in a ring of coupled sigmoidal neurons and
show metastable transient dynamics, have also been shown to
emerge in a ring of synaptically coupled Bonhoeffer–van der Pol
models [30], i.e., spiking neuron models. Adjacent neurons are
coupled unidirectionally with slow inhibitory synapses. In its
steady state, neurons in a firing state and a resting state are
alternately located. The rotating waves take the form of propagat-
ing oscillations, in which successive two neurons are in the same
states (resting–resting or firing–firing) and the location of the
inconsistency propagates in the direction of coupling. The firing
and resting states of a spiking neuron correspond to a positive and

negative steady states of a sigmoidal neuron, respectively. The two
states of a spiking neuron differ qualitatively and the difference
can be modeled by asymmetry in the output of a sigmoidal
neuron. Thus, effects of asymmetry in a sigmoidal neuron are of
importance in order to study the pinning of rotating waves in rings
of such spiking neurons with asymmetric bidirectional coupling
and self-coupling.

We derived conditions for the pinning of wave fronts in the
presence of asymmetry in a sigmoidal output function by using
a piecewise linear output function. There were multiple separated
pinned regions in a plane of the strengths of asymmetric bidirec-
tional coupling and self-coupling, in which the numbers of unsatu-
rated neurons at wave fronts were different with each other.
Effects of asymmetry in an output function depended on whether
bidirectional coupling was excitatory or inhibitory. When bidirec-
tional coupling was excitatory, pinned regions shifted monotoni-
cally along the axis of the strength of asymmetric bidirectional
coupling as asymmetry in an output function increased. Wave
fronts were pinned when asymmetry in an output function was
compensated with asymmetric bidirectional coupling. When bidir-
ectional coupling was inhibitory, changes in pinned regions were
more complicated and depended on the parity of the number of
unsaturated neurons at wave fronts. When the number of unsa-
turated neurons at a wave front was odd, pinned regions shifted
along the axis of the strength of asymmetric bidirectional coupling
like the shifts for excitatory coupling, but in a different manner.
When the number of unsaturated neurons was even, the size of
pinned regions changed along the axis of the strength of self-
coupling. Then rotating waves were still always pinned when
bidirectional coupling was symmetric. Conditions for the pinning
also changed when one of positive and negative steady states was
unsaturated, in which only wave fronts with even numbers of
unsaturated neurons existed.

In the rest of the paper, a model equation of a ring of sigmoidal
neurons with asymmetric bidirectional coupling, self-coupling
and an asymmetric sigmoidal output function is introduced in
Section 2. The bifurcations of its steady states and limit cycles
are explained and the patterns of rotating waves are shown.
In Sections 3 and 4, rings with excitatory and inhibitory bidirec-
tional coupling are dealt with, respectively. It is shown that there
are wave fronts having neurons in unsaturated states when self-
coupling is inhibitory. Then, conditions for the pinning of wave
fronts are derived by using a piecewise linear output function.
Finally, conclusion and future work are given in Section 5.
In Appendix A, the existence and stability of steady solutions to
associated linear differential equations for unsaturated neurons
are shown.

2. A ring of sigmoidal neurons and rotating waves

We consider the following ring of sigmoidal neurons with
asymmetric bidirectional coupling and self-coupling.

dxn=dt ¼ �xnþ
cð1þdÞ

2
f ðgxn�1Þþ

cð1�dÞ
2

f ðgxnþ1Þþsf ðgxnÞ
f ðxÞ ¼ f1�exp½�2x=ð1�e2Þg=f1=ð1þeÞþexp½�2x=ð1�e2Þ�=ð1�eÞg
ð1rnrN; xn7N ¼ xn; g40; da0; �1oeo1Þ ð1Þ
where xn is the state of the nth neuron, f is an output function of a
neuron with an asymmetric shift e, g is an output gain, c is the
strength of bidirectional coupling between adjacent neurons, d is
asymmetry in bidirectional coupling, and s is the strength of self-
coupling. A periodic boundary condition is imposed so that a total
of N neurons make a closed loop. The asymptotic values of f at
infinity of x are f(x)-1þe (40) (x-1) and f(x)-�1þe (o0)
(x-�1), while f(x)¼tanh(x) when e¼0. The origin (xn¼0
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