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a b s t r a c t

Low rank representation is capable of capturing the global structure of mixed subspaces which are
usually assumed to be independent. However, its computation is time-consuming. In practice, the data
always distributes on subspaces that intersect or even overlap with each other. So the local structure
of the data among the overlapping parts is important. Sparsity is a good property to accelerate the
algorithm and capture the local linear structure. The drawback is that it breakups the low rank property
of the reconstruction coefficient matrix when combining with low rank representation. In order to
combine the two advantages properly, in this paper, we introduce a new constraint to the low rank
representation matrix, which is called sparse congruency. Fortunately, we find that this new constraint
is a simplification to the low rank and sparse constraints. Several experiments are implemented to
demonstrate the efficiency of our method in semi-supervised classification.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

With rapid development of the Internet, we are drowned in the
massive unlabeled data. How to make thorough use of the mass
of data becomes more and more important. In the application
of machine learning, such as pattern recognition, object detection
and image searching, we have to face the problem of lacking
sufficient labeled training data because the work of labeling is
really costly and laborious. Semi-supervised learning (SSL) [1] is a
technique which tries to cope with the very situations of limited
labeled data and abundant unlabeled data.

Recently, SSL has received a significant amount of attention in
both theory and practice. A great number of SSL methods, such as
Expectation-Maximization (EM) with generative mixture models,
self-training, co-training, transductive Support Vector Machine
(TSVM) [1–5], Sparse SSL using conjugate functions [6], Multi-
view Laplacian Support Vector Machines (SVMs) [7], and graph-
based methods, have been widely used and referenced. We will
pay more attention to the graph-based SSL method [8–11] in this
paper since its empirical success in practice and the computational
efficiency. Graph-based SSL methods define a graph G¼ ðV ; EÞ,
where nodes V are the labeled and unlabeled samples in the
dataset, edges E are associated with a weight matrix W which
reflects the similarity among samples. The label information then

can be efficiently and effectively propagated to unlabeled samples
across the graph. These methods, which are nonparametric,
discriminative, and transductive in nature, usually assume label
smoothness over the graph. According to literatures [12,13], the
construction of the graph should try to accommodate the cluster
assumption [3]: points on the same structure are likely to share
the same label. Therefore, the critical thing for graph-based SSL is
to correctly construct a graph which can best capture the essential
data structures [14,15]. Low rank representation (LRR) is testified
to significantly outperform the other state of the art methods at
exactly recovering the subspace structure of the original dataset,
and robust to noise [16]. A given dataset can be reasonably
described as points lying on several separated or mixed subspaces.
The problem to cluster data into groups with each group corre-
sponding to a subspace is usually called the subspace segmenta-
tion problem [17]. Comparing to the other subspace methods
(i.e. Generalized Principal Component Analysis (GPCA) [18], Robust
Algebra Segmentation (RAS) [19], Normalized Cuts (NCut) [20],
Sparse Subspace Clustering (SSC) [21], and Spectral Curvature
Clustering (SCC) [22]), LRR is better at capturing the global struc-
tures of the dataset. So LRR is more suitable to construct a good
graph for SSL in the subspace segmentation problem.

An informative graph should have the following three char-
acteristics [23]: high discriminating power, high sparseness, and
adaptive neighborhood. Though LRR is excellent to construct a
good graph for SSL in subspace segmentation problem, its compu-
tation is time-consuming and it always results in a comparably
dense graph which is time-consuming to analyze. A common
problem of graph based methods in the area of machine learning
is that the complexity of obtaining the solution scales as OðN3Þ, in
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which N is the data size. To accelerate the computation, literature
[24] proposed a typical low rank approximation technique, named
Nystrom̈ method, for Large-scale machine learning problems. With a
small part of columns sampled from the original Symmetric Positive
Semi-Definite (SPSD) matrix, Nyström method approximates the
original SPSDmatrix by the following SPSD Sketching Model [24]: Let
A be an n�n positive semi-definite matrix, and S be a matrix of
size n� l, where l5n. Take C¼AS and W ¼ S0AS. Then CW†C 0 is a
low-rank approximation to Awith rank at most l. Nystrom̈ method is
usually used to approximate the affinity matrix in the area of
machine learning. The performance of Nystrom̈ method is greatly
affected by the way of sampling columns from the original matrix
(namely, the structure of matrix S). Yan et al. [25,26] proposed a
sparse graph based on sparse representation (SR), which is sparse
datum adaptive and robust to noise. Recently, literature [27] also
proposed a sparse method, named manifold-preserving graph reduc-
tion, for sparse SSL. The only shortage of this method is that the
sparse graph method finds the sparsest representation for each
sample individually and thus it lacks a global consistent constraint
on the solutions. So the representation bases of all samples will be so
multifarious that we cannot see the subspace structure of the dataset.
SR is a global method to one sample, but the global structure to be
captured here is the structure reflected by the representations of all
the samples in the dataset. Fortunately, Zhuang et al. [28] proposed a
Non-Negative Low Rank and Sparse Graph (NLS1-graph) for SSL. By
combining the sparse and low rank constraints on the reconstruction
coefficient matrix, the NLS1-graph informatively harnesses both
sparse and low rank properties of the dataset. Thus, the NLS1-
graph can capture not only the local low-dim linear relationship but
also the global subspace structure of the dataset. However, directly
combining of sparse and low rank constraints seems to be too
arbitrary. The sparse constraint for the reconstruction coefficient
matrix is entry-wise, resulting in the lacking of a global constraint.
Thus, the sparse constraint will break up the low rank property of the
reconstruction coefficient matrix, and more iterations are needed for
the algorithm to get convergence. Another small shortage is that
NLS1-graph needs two independent parameters to trade off among
three constraints: low rank, sparse, and noise (reconstruction error).
Thus, the manual choose of the parameters is really difficult.

In this paper, we did two contributions.
First, we introduce a constraint from the literature [29,30],

which is called joint sparse representation, to settle the problem
existing in the combination of LRR and SR. In contrast with the
NLS1-graph method, we cut the small valued entries of a recon-
struction coefficient matrix without breaking up the low rank
property. The proposed method is suitable for both the cases that
samples of different classes exist in different subspaces and the
cases that samples exist in two overlapped subspaces or indepen-
dent subspaces. We will see in the experiments part that when
there are some samples exist in two overlapped subspaces, though
the performance of our method is affected, it enhanced the
performance of LRR based methods on overcoming the subspace
overlapping problem and kept the best one comparing to the
LRR based methods. There is a lot work to do to more perfectly
overcome this shortage. For simplicity, we assume that the
reconstruction coefficient vectors for the samples of the same
cluster share a common sparse pattern. And at the same time, the
values of the coefficients corresponding to the same atom may be
different for each sample. That is to say, the joint sparse repre-
sentation allows all the samples belonging to the same cluster to
be reconstructed by the same small set of atoms, while weighted
with specific values. Thus, the reconstruction coefficient matrix is
possible to get sparse without losing its low rank property.

Second, we observed that the joint sparse representation has
two properties: low rank and sparse. That is to say, the joint sparse
representation itself is sufficient to capture both the local and

global structure information of the dataset. Here, for convenience,
we call the constraint used in the joint sparse representation as
sparse congruency constraint. And the representation method
under this constraint is named as sparse congruency representa-
tion (SCR). Motivated by this idea, we proposed a novel method to
construct an informative graph, which is low rank and sparse, with
only one parameter to balance between two constraints: sparse
congruency and noise (reconstruction error). We call such graph as
sparse congruency graph.

Extensive experiments have been conducted on public databases
for the semi-supervised classification problem. In the experiments
part, we will see that the sparse congruency graph has significantly
improved the performance of SSL, especially when it is compared
with the classical low rank based methods. All these results
remarkably demonstrate that our method can construct a more
informative graph with less time than the classical methods.

Our work has several conceptual advantages as follows:
First, the sparse congruency constraint ensures the graph to be

sparse and low rank at the same time. Thus the graph captures the
local and global structure of the dataset simultaneously without
facing the confliction between SR and LRR;

Second, when the subspaces are overlapped with each other,
the low rankness of the dataset seems inconspicuous. So the local
structure becomes important and accurate in exploring the cluster
structure of the dataset, while the low rank constraint may
mislead us. This is because LRR is more suitable for the cases that
samples of different classes exist in different subspaces. When
the subspaces are overlapped, it is difficult for LRR to identify
the subspaces of different clusters. Thus the sample in a specific
subspace can be represented by the samples within this subspace
as well as subspaces which are overlapped with this subspace. For
example, Fig. 2(d) shows a reconstruction coefficients matrix
obtained by LRR. The dataset belongs to three clusters. The sub-
space of the third cluster is overlapped with the subspaces of the
first two clusters. We can observe that samples in the third cluster
have a close relationship with the samples in all the three clusters.
Compared with the classical low rank based methods, the sparse
congruency constraint integrates the low rank property into SR
skillfully and avoids the misleading of LRR. Thus a proper local
low-dimensional linear relationship of the data can be exploited.

Finally, due to the abandoning of the low rank constraint, our
method saves a great amount of time computing the singular
value decomposition (SVD). And we have only one parameter
to tune mutually. What is more, the skillful resolution of the
confliction between sparse and low rank properties saves a lot of
time, too.

The rest of the paper is organized as follows. In Section 2, we
precisely illustrate the problem trying to be solved. In Section 3,
the key idea of our method is explained and the details on
the formulation of a SCR optimization problem are presented. In
Section 4, an algebraic solution for the optimization problem is
displayed and summarized. In Section 5, we give the detailed
procedure on how to construct the sparse congruency graph and
how to integrate the graph into the SSL framework. In Section 6,
extensive experiments and detailed analysis are presented. Finally,
we conclude our paper in Section 7.

2. Background

LRR has many advantages over the other manifold learning
methods when used to capture the global structure of the dataset.
However, its drawbacks are not neglectable: First, LRR is not able
to maintain the local feature which is as important as the global
feature when the subspaces overlapped with each other; second,
when the dataset is too big or the feature dimension is too large,
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