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a b s t r a c t

Microbe-based neural network computing, where the reaction of microbial cells to external stimuli is
incorporated in the function of virtual neurons, has high potential for developing soft computing based
on the survival strategies of the microbe. To utilize reaction-threshold diversity among the cells, we
examined analog feedback in Euglena-based neurocomputing by solving a simple combinatorial
optimization problem. The analog feedback was performed by blue light illumination to Euglena cells,
where the intensity of the blue light was controlled using the Hopfield-Tank algorithm with a sigmoid
function. The solution patterns obtained with analog feedback had greater variations than those with
digital feedback, implying that the solution-search capability of Euglena-based neurocomputing is
enhanced by analog feedback. Moreover, the solutions obtained with analog feedback comprised one
stable core-motive selection and additional flexible selections, which are associated with hesitation
shown by humans when faced with a frustrated task. The study shows that using analog feedback in
Euglena-based neurocomputing is promising in terms of incorporating the diversity of photoreactions of
Euglena cells to enhance the solution-search capability for combinatorial optimization problems and to
utilize the adaptive reaction of Euglena cells.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Microbial cells are independent complete units, with functions for
nutrition acquisition, metabolic activity, growth and reproduction,
adaptation, and evolution. Through evolution and natural selection
over several million years, they have developed reasonable and
sophisticated reactions to external stimuli as a survival strategy. For
instance, Escherichia coli has multi-level signal processing of noise
reduction and signal amplification allowing them to sense a very
small amount of a nutritious substance and to move towards its
source [1–4]. Euglena gracilis can sense the intensity of blue light
allowing them to stay in a moderately illuminated area for
photosynthesis by changing their swimming direction [5–7]. A large
diversity in photophobic reaction threshold is observed among the
cells. They also adapt to external stimuli such as chemical concen-
tration or light intensity by modifying their metabolism [8].

Using living microbial cells in computational processing is,
therefore, a fascinating challenge to incorporate their autonomous
adaptation and exploration capabilities into a physical computing
algorithm. Adaptive computing or explorative solution search may
be realized autonomously without creating a complicated compu-
ter program by using the reactions of microbial cells to the
external stimuli as a function of computational signal processing.
Some pioneering works on microbe-based computing have made
use of a true slime mold, Physarum polycephalum, to study net-
work construction [9] or combinatorial optimization [10,11].
We also studied Euglena-based neural network computing by
utilizing the photophobic reaction of Euglena cells confined in a
micro-aquarium [12–15]. In our study, neurocomputing proceeded
in an optical feedback system [16] by monitoring the swimming
behavior of Euglena cells and providing external optical stimuli
through the Hopfield-Tank algorithm [17].

One of the essential characteristics of Euglena-based neuro-
computing identified in our study [14,15] is that a number of
solutions are obtained through dynamic transitions among the
solutions, derived from the stochastic movements of Euglena cells
and the existence of photoinsensitive cells. As in conventional
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silicon-based neurocomputing, our previous study used binary
states for neuron activities, i.e., firing or non-firing, corresponding
to the external stimuli (blue light illumination to Euglena cells)
being On or Off. However, the photophobic responses of Euglena
are not identical for all cells. As evidenced by the existence of
photoinsensitive cells, the threshold of photophobic reaction
varies among the cells, and the frequency of changes in swimming
direction depends on the blue light intensity. This diversity among
cells creates a new avenue for enhancing the solution search
capability of Euglena-based neurocomputing by employing analog
feedback instead of digital feedback.

In this report, we examine analog feedback in Euglena-based
neurocomputing and compare its performance with that of neuro-
computing with digital feedback. The swimming activity of Euglena
cells in a micro-aquarium was measured in 16 individual compart-
ments, corresponding to 16 virtual neurons for neurocomputing. The
analog/digital feedback was performed by blue light illumination to
the 16 compartments according to the Hopfield-Tank algorithm, for a
simple combinatorial optimization task involving the selection of
certain compartments while avoiding the closest four compartments.
The performance differences between the analog and digital feed-
back neurocomputing were analyzed in terms of the temporal
evolution of compartment selection, the number of solution patterns,
and the blue light intensity distribution.

2. Experimental setup and computational algorithm

2.1. Experimental setup

The transparent micro-aquarium used in this study was 0.12 mm
deep and comprised 16 equal compartments with an outer diameter
of 2.5 mm, as shown in Fig. 1a. The compartments were located
around a center circle, 0.8 mm in diameter. Approximately 160 cells of
Euglena gracilis (spindle shaped cells, 50–80 μm long, 10–30 μm in
diameter, and with 0.1–0.4 mm/s swimming speed) were confined in
the micro-aquarium by placing a droplet of water containing Euglena
cells on the micro-aquarium and capping it with a cover glass. The
micro-aquarium was sealed in a glass-bottom dish and placed on the
stage of an optical microscope (Olympus, BX51). The optical feedback
system we developed [16] can project two-dimensional (2D) optical
patterns of size 5.1�3.8 mm2 from a liquid crystal projector (Sanyo,
LP-XU87) onto the micro-aquarium. The 16 compartments, labeled A
to P as shown in Fig. 1b were illuminated individually by blue light
according to the neural network algorithm described in the next
section. Blue light induces a reduction in cell density in the compart-
ment through the photophobic reaction of Euglena cells [16]. Real
images of the Euglena cells were taken with a video camera (Trinity,
IUC-200CK2) through a 5� object lens with an observation area of
4.0�3.0 mm2. The resolution of pattern projection and image capture
was 200 pixel/mm. The real images taken with a frame rate of 0.16 s
were converted into trace images of swimming Euglena cells by
subtracting, thresholding, binarization, and superimposition of 10
images. Through this conversion, trace images were produced with
a repetition rate of 0.63 Hz, as shown in the example in Fig. 1b.

2.2. Neural network algorithm

Fig. 2a depicts a chart giving the calculation steps for Euglena-
based neurocomputing with digital/analog feedback. The swimming
movement of Euglena cells in individual compartments was evaluated
using trace momentum (TM), i.e., the number of pixels in a compart-
ment in the trace image. As shown by the numbers in Fig. 1b, a higher
TM means that the compartment has a greater number of swimming
Euglena cells with a higher swimming speed.

Each compartment corresponds to one neuron as illustrated in
Fig. 2b, and the TM of the compartment is treated as the output

signal {xj(t)} of the neuron. All 16 output signals {xj(t)} are sent to
the other neurons as the input signals for the next time step. The
input signals {xj(t)} are integer values typically in the range of
[0..1000]. In order to fit input signals {xj(t)} to the Hopfield-Tank
algorithm [17], the values {xj(t)} are converted into real values in
the range [0..1] by the sigmoid function given in Eq. (1).

sðxÞ ¼ 1=ð1þexpð�bðx�cÞÞÞ ð1Þ
Parameters b and c in Eq. (1) are calculated by Eqs. (2) and (3),
respectively, which were derived empirically as a function of the
photoreaction ratio γ. The photoreaction ratio γ is defined by the
ratio between the 10-latest averaged TMs without blue-light
(av_TM0) and with blue-light (av_TM1), as given by Eq. (4).

bðγÞ ¼ ð0:72γþ0:246Þ � ð22:0=av_TM0Þ ð2Þ

cðγÞ ¼ ð32:1γ2�2:79γþ11:9Þ � ðav_TM0=22:0Þ ð3Þ

γ ¼ av_TM1=av_TM0 ð4Þ
Details of the parameter determination in Eqs. (2)–(4) have been
reported separately [14,15]. The photoreaction ratio γ and
parameters b and c were refreshed every 10 time steps, i.e.,
every 16 s.

After calculating sðxjðtÞÞwith Eq. (1)–(4), a weighting summa-
tion was obtained for each neuron by the Hopfield-Tank algorithm
given in Eq. (5) with a weight matrix wij.

yiðtþΔtÞ ¼ f ∑N
j wijsðxjðtÞÞ

� �
ð5Þ

Fig. 1. (a, Top) 3D image of 16-compartment micro-aquarium observed with
a confocal microscope. The micro-aquarium was made of polydimethylsiloxane.
(b, Bottom) Example of trace image of swimming Euglena cells in the micro-
aquarium. Letters outside the micro-aquarium denote the indices of the compart-
ments, while numbers outside the compartments represent the TM values obtained
by counting the pixels of traces in the individual compartments. TM values are high
for compartments with larger numbers of swimming Euglena cells. Illumination
intensity for each compartment is indicated by the brightness of the compart-
ment's color.
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