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a b s t r a c t

Conventional bilateral filter (BF) can suppress Gaussian noise effectively, but fail to remove impulsive
noise and may blur edges in an image. To address these shortcomings, we aim to develop an improved
bilateral filter based framework which is capable of effectively removing universal noise, i.e. impulses,
Gaussian noise or mixture of the two types of noises, from images without oversmoothing edge details.
To this end, our proposed denoising framework mainly consists of an impulse noise detector (IND), an
edge connection precedure and an adaptive bilateral filter (ABF). Specifically, we first compute an edge
component value to classify a pixel into impulse or nonimpulse. This is followed by an edge connection
procedure, producing more connected edge regions. Then we introduce an adaptive bilateral filter which
switches between Gaussian and impulse noise depending on the impulse noise detection results. This
makes the adaptive bilateral filter be robust to these two types of noises. We also present an improved
artificial bee colony (IABC) algorithm to optimize the parameters of the adaptive bilateral filter, enabling
both effective noise removal and fine edge preservation. Experimental results demonstrate that the
proposed image denoising framework outperforms alternative state of the art filters both in visual
qualitative evaluations and quantitative comparisons.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Noise removal is an important preprocessing module for
various image and video processing systems. The term noise in
digital image processing is referred to any quantity that deflects an
observed pixel from its raw value. Observed images can be easily
corrupted by various noises in the process of acquisition or
transmission. On the other hand, universal noise removal has
always been a difficult problem. This is because the noises
corrupting an image could be of various forms, such as additive
Gaussian noise, impulse noise or multiplicative noise, with differ-
ent characteristics.

Additive Gaussian noise is referred to quantities with a zero-
mean Gaussian distribution and this type of noise could be added
to images in the process of acquisition. Conventional linear filters
remove Gaussian noises with detriments for edge and texture
details in an image. To address this problem, a number of modified
Gaussian noise removal methods have been studied for the
purpose of edge-preserving [1–6]. Wavelet thresholding algorithm
is one of the most favorable approaches. In wavelet thresholding
frameworks, the notable BLS-GSM method [2] is adopted to adjust
the neighborhoods of coefficients at different positions and scales
and to apply the Bayesian least squares estimation technique to

update the wavelet coefficients. In addition, the method SURE
[3] considers Stein's unbiased risk estimate depending on the
noisy image alone, so it is unnecessary to devise a specific
statistical model for the wavelet coefficients. Though both the
methods BLS-GSM and SURE prove to be effective in removing
additive Gaussian noises in normal cases, their performances are
hard to maintain when the Signal-to-Noise Ratios (SNRs) are
reasonably low. Anisotropic diffusion (AD) [4] uses local conduc-
tion coefficients of the gradient magnitude function to preserve
edges. However, AD is not appropriate for denoising images with
texture structures, though the oversharpening and slow conver-
gence issues may be addressed by some modified AD algorithms
[5]. Buades et al. proposed an effective non-local means (NLM)
filter [7] based on the similarities of local patches. However, this
method suffers from high computational complexity in the global
search for pixels with similar intensity. On the other hand, it does
not perform well under low SNRs, even on the condition that
several modified measures [8,9], such as the algorithm of principal
neighborhood dictionaries for nonlocal means [8], have been
exploited for alleviating the complexity of basic NLM. Bilateral
filter (BF) [10] proposed by Tomasi and Manducci is another
significant nonlinear filtering algorithm. BF uses local information
of an image to identify detailed components and then smooth
them less than the other components of the image. Moreover, this
approach is simple, noniterative and local [10,11]. One of the most
limitations of BF is that the range filter coefficients rely heavily on
pixel intensity values. Furthermore, BF does not consider edge
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information, and thus cannot balance the effects of noise removal
and edge preservation. Several algorithms of BF have been
proposed to address visual details and smooth the rest regions
as much as possible [12–16]. On the other hand, BF is a class of
Gaussian noise removal methods with parameters which are
usually determined by trial and error in practice. Fixed parameters
may not be well suited for noise removal and edge preservation for
all regions within an image. In [16], Zhang et al. proposed that a
good range for the standard deviation of the domain filter is rough
[1.5–2.1], and the optimal standard deviation of the range filter
changes importantly as the noise standard deviation changes. Yang
et al. utilizes particle swarm optimization (PSO) algorithm to
adjust the parameter of BF [17]. However, it does not explain the
details about how to choose the fitness function and the para-
meter values of PSO. Above all, there are seldom theoretical
insights into the problem of how to obtain the optimal values
for the parameters of BF.

Another type of noise often corrupting an image is impulse
noise, which replaces the values of a portion of pixel with random
values. Such noise will exist in an image due to transmission errors
[18]. Median filter can remove impulse noise to a certain extent,
with some of its improved alternatives better preserving edge and
details [19–23]. For instance, the adaptive center-weighted median
filter (ACWMF) [19] incorporates an adaptive threshold into the
center weighted medians for detection. ACWMF can remove
impulse noise much more effectively for low level noise, but its
denoising performance is not satisfactory under low SNRs. The
directional weighted median (DWM) filter [20] is another impulse
noise suppression method with a detector on account of absolute
differences within the filtering window. For upgrading high
accuracy of detection, DWM filter needs to iterate, and thus takes
a longer processing time. Another solution for impulse suppres-
sion is that the switching procedure detects impulse pixels before
filtering and replaces them with estimated values while leaving
the remaining pixels unchanged [24,25]. The switching algorithms
blur fewer pixels than other global pixels processing methods, and
thus could more or less preserve details along edges in an image.

In practice, mixed noise including the Gaussian and impulse
noise could occur simultaneously during the transmission and
acquisition. A number of attempts have been made to remove
mixed noise from images [26–32]. The median-based signal-
dependent rank ordered mean (SD-ROM) filter [26] claims the
capability of removing impulse noise and mixed noise as well.
Trilateral filter (TF) [28] and switching bilateral filter (SBF) [29] are
also two notable filters on the basis of BF for removing mixed
noise in gray images. TF computes the rank-order absolute
difference (ROAD) statistics for impulse noise detection. SBF
proposed the sorted quadrant median vector (SQMV) scheme for
detecting impulse noise, and the range filter inside the BF switches
between Gaussian and impulse noise relying on the noise classi-
fication results. By and large, SD-ROM, TF and SBF all can suppress
mixed noise to a certain extent under reasonable SNRs. However,
experiments show that they are incapable of denoising an image
which is heavily corrupted by mixed noise. Therefore, a mixed
noise removal method for low SNR images is needed.

In this paper, we present an image denoising framework based
on an impulse noise detector and a modified BF with adaptive
parameters. We particularly apply the framework to the task of
removing impulse noise and Gaussian noise simultaneously.
It employs the edge component [33] variation between the current
pixel and its neighbors to detect impulse noise. Moreover, the edge
component is also exploited as connections for discontinuous
edges. BF plays a role of suppressing Gaussian and impulse noise.
In order to preserve edge structures and reduce noise in smooth
regions, an improved artificial bee colony (IABC) algorithm is
proposed to optimize the parameters of BF, in which the best

direction is obtained to modify the search process and the search
range for the scout bee is reduced. The proposed framework
generalizes classical bilateral filters from addressing Gaussian
noise to mixed noise consisting of both impulse and Gaussian
noise.

This paper is organized as follows. In Section 2, we briefly
review the image model, the conventional bilateral filter, the
anisotropic Gauss filter and the artificial bee colony algorithm.
Section 3 presents the impulse noise detection scheme, edge
connection measure and the BF optimized by the IABC algorithm.
In Section 4, we demonstrate the experimental results on impulse
and Gaussian noise removal. Finally, Section 5 concludes our work.

2. Fundamentals

2.1. Noise models

We represent an image in terms of a matrix Y with the entry
ym;n denoting the intensity value of the pixel at ðm;nÞ.

Provided that an image is corrupted by additive Gaussian noise
as follows:

ym;n ¼ om;nþzm;n ð1Þ

where om;n denotes the pixel intensity of a noise-free image O at
(m,n) and zm;n is the added noise value produced from a zero-mean
Gaussian distribution.

For the case of impulse noise, a portion of original pixel values
are replaced by random values drawn from some distribution. Let
zm;n denote the intensity value of impulse noise at ðm;nÞ. zm;n is
between maximum intensity value Imax and minimum intensity
value Imin. If zm;n only defines either Imax or Imin, the noise model is
referred to as salt-and-pepper noise. Furthermore, on condition
that zm;n takes random values from the interval ½Imin; Imax� with a
uniform distribution, the noise model is referred to as uniform
impulse noise. The impulse noisy image can be expressed as

ym;n ¼
zm;n with probability p

om;n with probabilityð1�pÞ

(
ð2Þ

where p denotes the probability of a noise-free image corrupted by
impulse noise.

2.2. Bilateral filter

Processing a noisy image Y through bilateral filtering can be
formulated as follows [10]:

ôm;n ¼ ∑
mþR

p ¼ m�R
∑
nþR

q ¼ n�R
Hðm;n; p; qÞyp;q 8ðp; qÞAΩR

m;n ð3Þ

where ôm;n denotes the processed pixel at (m,n), Hðm;n; p; qÞ is the
weight coefficient between the current pixel and its neighboring
points, and ΩR

m;n represents a set of pixels in a ð2Rþ1Þ � ð2Rþ1Þ
window centered on ðm;nÞ. The weight coefficient is given by [10]

Hðm;n; p; qÞ ¼

w�1
m;nexp �ðp�mÞ2 þðq�nÞ2

2s2
d

� �
exp �ðyp;q �ym;nÞ2

2s2
r

� �
if ðp; qÞAΩR

m;n

0 otherwise

8<
:

ð4Þ

where sd and sr are the standard deviations of the domain and
range Gaussian filters, respectively. wm;n is a normalization factor
to make the filter preserve an average gray value in constant of the
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